勾股定理知識(shí)
勾股定理知識(shí)
勾股定理指的是直角三角形的兩條直角邊的平方和等于斜邊的平方。那么你對勾股定理了解多少呢?以下是由學(xué)習(xí)啦小編整理關(guān)于勾股定理知識(shí)的內(nèi)容,希望大家喜歡!
勾股定理定義
在平面上的一個(gè)直角三角形中,兩個(gè)直角邊邊長的平方加起來等于斜邊長的平方。如果設(shè)直角三角形的兩條直角邊長度分別是和 ,斜邊長度是 ,那么可以用數(shù)學(xué)語言表達(dá):
勾股定理是余弦定理中的一個(gè)特例。
勾股定理的推廣
勾股數(shù)組
勾股數(shù)組是滿足勾股定理 的正整數(shù)組 ,其中的 稱為勾股數(shù)。例如 就是一組勾股數(shù)組。
任意一組勾股數(shù) 可以表示為如下形式:其中均為正整數(shù)且 。
定理用途
已知直角三角形兩邊求解第三邊,或者已知三角形的三邊長度,證明該三角形為直角三角形或用來證明該三角形內(nèi)兩邊垂直。利用勾股定理求線段長度這是勾股定理的最基本運(yùn)用。
勾股定理意義
1、勾股定理的證明是論證幾何的發(fā)端;
2、勾股定理是歷史上第一個(gè)把數(shù)與形聯(lián)系起來的定理,即它是第一個(gè)把幾何與代數(shù)聯(lián)系起來的定理;
3、勾股定理導(dǎo)致了無理數(shù)的發(fā)現(xiàn),引起第一次數(shù)學(xué)危機(jī),大大加深了人們對數(shù)的理解;
4、勾股定理是歷史上第—個(gè)給出了完全解答的不定方程,它引出了費(fèi)馬大定理;
5、勾股定理是歐氏幾何的基礎(chǔ)定理,并有巨大的實(shí)用價(jià)值、這條定理不僅在幾何學(xué)中是一顆光彩奪目的明珠,被譽(yù)為“幾何學(xué)的基石”,而且在高等數(shù)學(xué)和其他科學(xué)領(lǐng)域也有著廣泛的應(yīng)用、1971年5月15日,尼加拉瓜發(fā)行了一套題為“改變世界面貌的十個(gè)數(shù)學(xué)公式”郵票,這十個(gè)數(shù)學(xué)公式由著名數(shù)學(xué)家選出的,勾股定理是其中之首。
勾股定理的發(fā)展簡史
中國
公元前十一世紀(jì),周朝數(shù)學(xué)家商高就提出“勾三、股四、弦五”。《周髀算經(jīng)》中記錄著商高同周公的一段對話。商高說:“…故折矩,勾廣三,股修四,經(jīng)隅五。”意為:當(dāng)直角三角形的兩條直角邊分別為3(勾)和4(股)時(shí),徑隅(弦)則為5。以后人們就簡單地把這個(gè)事實(shí)說成“勾三股四弦五”,根據(jù)該典故稱勾股定理為商高定理。
公元三世紀(jì),三國時(shí)代的趙爽對《周髀算經(jīng)》內(nèi)的勾股定理作出了詳細(xì)注釋,記錄于《九章算術(shù)》中“勾股各自乘,并而開方除之,即弦”,趙爽創(chuàng)制了一幅“勾股圓方圖”,用形數(shù)結(jié)合得到方法,給出了勾股定理的詳細(xì)證明。后劉徽在劉徽注中亦證明了勾股定理。
在中國清朝末年,數(shù)學(xué)家華蘅芳提出了二十多種對于勾股定理證法。
外國
在公元前約三千年的古巴比倫人就知道和應(yīng)用勾股定理,他們還知道許多勾股數(shù)組。美國哥倫比亞大學(xué)圖書館內(nèi)收藏著一塊編號(hào)為“普林頓322”的古巴比倫泥板,上面就記載了很多勾股數(shù)。古埃及人在建筑宏偉的金字塔和測量尼羅河泛濫后的土地時(shí),也應(yīng)用過勾股定理。
公元前六世紀(jì),希臘數(shù)學(xué)家畢達(dá)哥拉斯證明了勾股定理,因而西方人都習(xí)慣地稱這個(gè)定理為畢達(dá)哥拉斯定理。
公元前4世紀(jì),希臘數(shù)學(xué)家歐幾里得在《幾何原本》(第Ⅰ卷,命題47)中給出一個(gè)證明。
1876年4月1日,加菲爾德在《新英格蘭教育日志》上發(fā)表了他對勾股定理的一個(gè)證法。
1940年《畢達(dá)哥拉斯命題》出版,收集了367種不同的證法。
看過“勾股定理知識(shí)“的人還看了:
1.怎樣證明勾股定理