国产成人v爽在线免播放观看,日韩欧美色,久久99国产精品久久99软件,亚洲综合色网站,国产欧美日韩中文久久,色99在线,亚洲伦理一区二区

學(xué)習(xí)啦 > 知識大全 > 知識百科 > 百科知識 > 公務(wù)員行測考試:排列組合問題

公務(wù)員行測考試:排列組合問題

時(shí)間: 謝君787 分享

公務(wù)員行測考試:排列組合問題

  排列組合問題是歷年公務(wù)員考試行測的必考題型,并且隨著近年公務(wù)員考試越來越熱門,國考中這部分題型的難度也在逐漸的加大,解題方法也趨于多樣化。以下是由學(xué)習(xí)啦小編整理關(guān)于排列組合問題解決策略和方法技巧的內(nèi)容,希望大家喜歡!

  一、排列和組合的概念

  排列:從n個(gè)不同元素中,任取m個(gè)元素(這里的被取元素各不相同)按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列。

  組合:從n個(gè)不同元素種取出m個(gè)元素拼成一組,稱為從n個(gè)不同元素取出m個(gè)元素的一個(gè)組合。

  二、排列組合七大解題策略

  1、特殊優(yōu)先法

  特殊元素,優(yōu)先處理;特殊位置,優(yōu)先考慮。對于有附加條件的排列組合問題,一般采用:先考慮滿足特殊的元素和位置,再考慮其它元素和位置。

  例:從6名志愿者中選出4人分別從事翻譯、導(dǎo)游、導(dǎo)購、保潔四項(xiàng)不同的工作,若其中甲、乙兩名志愿者都不能從事翻譯工作,則不同的選派方案共有( )

  (A)280種

  (B)240種

  (C)180種

  (D)96種

  正確答案:【B】

  解析:由于甲、乙兩名志愿者都不能從事翻譯工作,所以翻譯工作就是“特殊”位置,因此翻譯工作從剩下的四名志愿者中任選一人有C(4,1)=4種不同的選法,再從其余的5人中任選3人從事導(dǎo)游、導(dǎo)購、保潔三項(xiàng)不同的工作有A(5,3)=10種不同的選法,所以不同的選派方案共有 C(4,1)×A(5,3)=240種,所以選B。

  2、科學(xué)分類法

  問題中既有元素的限制,又有排列的問題,一般是先元素(即組合)后排列。

  對于較復(fù)雜的排列組合問題,由于情況繁多,因此要對各種不同情況,進(jìn)行科學(xué)分類,以便有條不紊地進(jìn)行解答,避免重復(fù)或遺漏現(xiàn)象發(fā)生。同時(shí)明確分類后的各種情況符合加法原理,要做相加運(yùn)算。

  例:某單位邀請10為教師中的6為參加一個(gè)會議,其中甲,乙兩位不能同時(shí)參加,則邀請的不同方法有()種。

  A、84 B、98 C、112 D、140

  正確答案【D】

  解析:按要求:甲、乙不能同時(shí)參加分成以下幾類:

  a、甲參加,乙不參加,那么從剩下的8位教師中選出5位,有C(8,5)=56種;

  b、乙參加,甲不參加,同(a)有56種;

  c、甲、乙都不參加,那么從剩下的8位教師中選出6位,有C(8,6)=28種。

  故共有56+56+28=140種。

  3、間接法

  即部分符合條件排除法,采用正難則反,等價(jià)轉(zhuǎn)換的策略。為求完成某件事的方法種數(shù),如果我們分步考慮時(shí),會出現(xiàn)某一步的方法種數(shù)不確定或計(jì)數(shù)有重復(fù),就要考慮用分類法,分類法是解決復(fù)雜問題的有效手段,而當(dāng)正面分類情況種數(shù)較多時(shí),則就考慮用間接法計(jì)數(shù)、

  例:從6名男生,5名女生中任選4人參加競賽,要求男女至少各1名,有多少種不同的選法?

  A、240 B、310 C、720 D、1080

  正確答案【B】

  解析:此題從正面考慮的話情況比較多,如果采用間接法,男女至少各一人的反面就是分別只選男生或者女生,這樣就可以變化成C(11,4)-C(6,4)-C(5,4)=310。

  4、捆綁法

  所謂捆綁法,指在解決對于某幾個(gè)元素要求相鄰的問題時(shí),先整體考慮,將相鄰元素視作一個(gè)整體參與排序,然后再單獨(dú)考慮這個(gè)整體內(nèi)部各元素間順序。注意:其首要特點(diǎn)是相鄰,其次捆綁法一般都應(yīng)用在不同物體的排序問題中。

  例:5個(gè)男生和3個(gè)女生排成一排,3個(gè)女生必須排在一起,有多少種不同排法?

  A、240 B、320 C、450 D、480

  正確答案【B】

  解析:采用捆綁法,把3個(gè)女生視為一個(gè)元素,與5個(gè)男生進(jìn)行排列,共有 A(6,6)=6x5x4x3x2種,然后3個(gè)女生內(nèi)部再進(jìn)行排列,有A(3,3)=6種,兩次是分步完成的,應(yīng)采用乘法,所以排法共有:A(6,6) ×A(3,3) =320(種)。

  5、插空法

  所謂插空法,指在解決對于某幾個(gè)元素要求不相鄰的問題時(shí),先將其它元素排好,再將指定的不相鄰的元素插入已排好元素的間隙或兩端位置。

  注意:a、首要特點(diǎn)是不鄰,其次是插空法一般應(yīng)用在排序問題中。

  b、將要求不相鄰元素插入排好元素時(shí),要注釋是否能夠插入兩端位置。

  c、對于捆綁法和插空法的區(qū)別,可簡單記為“相鄰問題捆綁法,不鄰問題插空法”。

  例:若有甲、乙、丙、丁、戊五個(gè)人排隊(duì),要求甲和乙兩個(gè)人必須不站在一起,且甲和乙不能站在兩端,則有多少排隊(duì)方法?

  A、9 B、12 C、15 D、20

  正確答案【B】

  解析:先排好丙、丁、戊三個(gè)人,然后將甲、乙插到丙、丁、戊所形成的兩個(gè)空中,因?yàn)榧住⒁也徽緝啥?,所以只有兩個(gè)空可選,方法總數(shù)為A(3,3)×A(2,2)=12種。

  6、插板法

  所謂插板法,指在解決若干相同元素分組,要求每組至少一個(gè)元素時(shí),采用將比所需分組數(shù)目少1的板插入元素之間形成分組的解題策略。

  注意:其首要特點(diǎn)是元素相同,其次是每組至少含有一個(gè)元素,一般用于組合問題中。

  例:將9個(gè)完全相同的球放到3個(gè)不同的盒子中,要求每個(gè)盒子至少放一個(gè)球,一共有多少種方法?

  A、24 B、28 C、32 D、48

  正確答案【B】

  解析:解決這道問題只需要將9個(gè)球分成三組,然后依次將每一組分別放到一個(gè)盒子中即可。因此問題只需要把9個(gè)球分成三組即可,于是可以將9個(gè)球排成一排,然后用兩個(gè)板插到9個(gè)球所形成的空里,即可順利的把9個(gè)球分成三組。其中第一個(gè)板前面的球放到第一個(gè)盒子中,第一個(gè)板和第二個(gè)板之間的球放到第二個(gè)盒子中,第二個(gè)板后面的球放到第三個(gè)盒子中去。因?yàn)槊總€(gè)盒子至少放一個(gè)球,因此兩個(gè)板不能放在同一個(gè)空里且板不能放在兩端,于是其放板的方法數(shù)是C(8,2)=28種。(注:板也是無區(qū)別的)

  7、選“一”法,類似除法

  對于某幾個(gè)元素順序一定的排列問題,可先把這幾個(gè)元素與其他元素一同進(jìn)行排列,然后用總的排列數(shù)除以這幾個(gè)元素的全排列數(shù)。這里的“選一”是說:和所求“相似”的排列方法有很多,我們只取其中的一種。

  例:五人排隊(duì)甲在乙前面的排法有幾種?

  A、60 B、120 C、150 D、180

  正確答案【A】

  解析:五個(gè)人的安排方式有5!=120種,其中包括甲在乙前面和甲在乙后面兩種情形(這里沒有提到甲乙相鄰不相鄰,可以不去考慮),題目要求之前甲在乙前面一種情況,所以答案是A(5,5)÷A(2,2)=60種。

  以上方法是解決排列組合問題經(jīng)常用的,注意理解掌握。最后,行測中數(shù)量關(guān)系的題目部分難度比較大,答題耗時(shí)比較多,希望考試調(diào)整好答題的心態(tài)和答題順序,在備考過程中掌握好技巧和方法,提高答題的效率。
看過“公務(wù)員行測考試:排列組合問題“的人還看了:

1.2016政法干警考試行測:從基礎(chǔ)入手解排列組合問題

2.2016年國家公務(wù)員考試輔導(dǎo)之速解概率問題

3.公務(wù)員行測數(shù)學(xué)運(yùn)算試題及答案

4.2016年國考行測備考之三招教你拿下數(shù)量關(guān)系題型

5.2016政法干警考試行測:方程問題解題技巧

6.2016公務(wù)員考試行測備考之直言命題的含義

1290267