什么是數(shù)學(xué)建模_有哪些意義
什么是數(shù)學(xué)建模_有哪些意義
數(shù)學(xué)建模就是通過(guò)計(jì)算得到的結(jié)果來(lái)解釋實(shí)際問(wèn)題,并接受實(shí)際的檢驗(yàn),來(lái)建立數(shù)學(xué)模型的全過(guò)程。那么你對(duì)數(shù)學(xué)建模了解多少呢?以下是由學(xué)習(xí)啦小編整理關(guān)于什么是數(shù)學(xué)建模的內(nèi)容,希望大家喜歡!
數(shù)學(xué)建模的簡(jiǎn)介
數(shù)學(xué)技術(shù)
近半個(gè)多世紀(jì)以來(lái),隨著計(jì)算機(jī)技術(shù)的迅速發(fā)展,數(shù)學(xué)的應(yīng)用不僅在工程技術(shù)、自然科學(xué)等領(lǐng)域發(fā)揮著越來(lái)越重要的作用,而且以空前的廣度和深度向經(jīng)濟(jì),管理,金融、生物、醫(yī)學(xué)、環(huán)境、地質(zhì)、人口、交通等新的領(lǐng)域滲透,所謂數(shù)學(xué)技術(shù)已經(jīng)成為當(dāng)代高新技術(shù)的重要組成部分。
數(shù)學(xué)模型(Mathematical Model)是一種模擬,是用數(shù)學(xué)符號(hào),數(shù)學(xué)式子,程序,圖形等對(duì)實(shí)際課題本質(zhì)屬性的抽象而又簡(jiǎn)潔的刻畫(huà),它或能解釋某些客觀現(xiàn)象,或能預(yù)測(cè)未來(lái)的發(fā)展規(guī)律,或能為控制某一現(xiàn)象的發(fā)展提供某種意義下的最優(yōu)策略或較好策略。數(shù)學(xué)模型一般并非現(xiàn)實(shí)問(wèn)題的直接翻版,它的建立常常既需要人們對(duì)現(xiàn)實(shí)問(wèn)題深入細(xì)微的觀察和分析,又需要人們靈活巧妙地利用各種數(shù)學(xué)知識(shí)。這種應(yīng)用知識(shí)從實(shí)際課題中抽象、提煉出數(shù)學(xué)模型的過(guò)程就稱為數(shù)學(xué)建模(Mathematical Modeling)。
不論是用數(shù)學(xué)方法在科技和生產(chǎn)領(lǐng)域解決哪類實(shí)際問(wèn)題,還是與其它學(xué)科相結(jié)合形成交叉學(xué)科,首要的和關(guān)鍵的一步是建立研究對(duì)象的數(shù)學(xué)模型,并加以計(jì)算求解(通常借助計(jì)算機(jī));數(shù)學(xué)建模和計(jì)算機(jī)技術(shù)在知識(shí)經(jīng)濟(jì)時(shí)代的作用可謂是如虎添翼。
建模應(yīng)用
數(shù)學(xué)是研究現(xiàn)實(shí)世界數(shù)量關(guān)系和空間形式的科學(xué),在它產(chǎn)生和發(fā)展的歷史長(zhǎng)河中,一直是和各種各樣的應(yīng)用問(wèn)題緊密相關(guān)的。數(shù)學(xué)的特點(diǎn)不僅在于概念的抽象性,邏輯的嚴(yán)密性,結(jié)論的明確性和體系的完整性,而且在于它應(yīng)用的廣泛性。自從20世紀(jì)以來(lái),隨著科學(xué)技術(shù)的迅速發(fā)展和計(jì)算機(jī)的日益普及,人們對(duì)各種問(wèn)題的要求越來(lái)越精確,使得數(shù)學(xué)的應(yīng)用越來(lái)越廣泛和深入,特別是在21世紀(jì)這個(gè)知識(shí)經(jīng)濟(jì)時(shí)代,數(shù)學(xué)科學(xué)的地位會(huì)發(fā)生巨大的變化,它正在從國(guó)家經(jīng)濟(jì)和科技的后備走到了前沿。經(jīng)濟(jì)發(fā)展的全球化、計(jì)算機(jī)的迅猛發(fā)展、數(shù)學(xué)理論與方法的不斷擴(kuò)充,使得數(shù)學(xué)已經(jīng)成為當(dāng)代高科技的一個(gè)重要組成部分和思想庫(kù),數(shù)學(xué)已經(jīng)成為一種能夠普遍實(shí)施的技術(shù)。培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)和能力已經(jīng)成為數(shù)學(xué)教學(xué)的一個(gè)重要方面。
數(shù)學(xué)建模的過(guò)程
模型準(zhǔn)備
了解問(wèn)題的實(shí)際背景,明確其實(shí)際意義,掌握對(duì)象的各種信息。以數(shù)學(xué)思想來(lái)包容問(wèn)題的精髓,數(shù)學(xué)思路貫穿問(wèn)題的全過(guò)程,進(jìn)而用數(shù)學(xué)語(yǔ)言來(lái)描述問(wèn)題。要求符合數(shù)學(xué)理論,符合數(shù)學(xué)習(xí)慣,清晰準(zhǔn)確。
模型假設(shè)
根據(jù)實(shí)際對(duì)象的特征和建模的目的,對(duì)問(wèn)題進(jìn)行必要的簡(jiǎn)化,并用精確的語(yǔ)言提出一些恰當(dāng)?shù)募僭O(shè)。
模型建立
在假設(shè)的基礎(chǔ)上,利用適當(dāng)?shù)臄?shù)學(xué)工具來(lái)刻劃各變量常量之間的數(shù)學(xué)關(guān)系,建立相應(yīng)的數(shù)學(xué)結(jié)構(gòu)(盡量用簡(jiǎn)單的數(shù)學(xué)工具)。
模型求解
利用獲取的數(shù)據(jù)資料,對(duì)模型的所有參數(shù)做出計(jì)算(或近似計(jì)算)。
模型分析
對(duì)所要建立模型的思路進(jìn)行闡述,對(duì)所得的結(jié)果進(jìn)行數(shù)學(xué)上的分析。
模型檢驗(yàn)
將模型分析結(jié)果與實(shí)際情形進(jìn)行比較,以此來(lái)驗(yàn)證模型的準(zhǔn)確性、合理性和適用性。如果模型與實(shí)際較吻合,則要對(duì)計(jì)算結(jié)果給出其實(shí)際含義,并進(jìn)行解釋。如果模型與實(shí)際吻合較差,則應(yīng)該修改假設(shè),再次重復(fù)建模過(guò)程。
模型應(yīng)用與推廣
應(yīng)用方式因問(wèn)題的性質(zhì)和建模的目的而異,而模型的推廣就是在現(xiàn)有模型的基礎(chǔ)上對(duì)模型有一個(gè)更加全面,考慮更符合現(xiàn)實(shí)情況的模型。
數(shù)學(xué)建模的意義
思考方法
數(shù)學(xué)建模是一種數(shù)學(xué)的思考方法,是運(yùn)用數(shù)學(xué)的語(yǔ)言和方法,通過(guò)抽象,簡(jiǎn)化建立能近似刻畫(huà)并"解決"實(shí)際問(wèn)題的一種強(qiáng)有力的數(shù)學(xué)手段。
數(shù)學(xué)建模就是用數(shù)學(xué)語(yǔ)言描述實(shí)際現(xiàn)象的過(guò)程。這里的實(shí)際現(xiàn)象既包涵具體的自然現(xiàn)象比如自由落體現(xiàn)象,也包含抽象的現(xiàn)象比如顧客對(duì)某種商品所取的價(jià)值傾向。這里的描述不但包括外在形態(tài),內(nèi)在機(jī)制的描述,也包括預(yù)測(cè),試驗(yàn)和解釋實(shí)際現(xiàn)象等內(nèi)容。
我們也可以這樣直觀地理解這個(gè)概念:數(shù)學(xué)建模是一個(gè)讓純粹數(shù)學(xué)家(指只研究數(shù)學(xué)而不管數(shù)學(xué)在實(shí)際中的應(yīng)用的數(shù)學(xué)家)變成物理學(xué)家,生物學(xué)家,經(jīng)濟(jì)學(xué)家甚至心理學(xué)家等等的過(guò)程。
數(shù)學(xué)模型一般是實(shí)際事物的一種數(shù)學(xué)簡(jiǎn)化。它常常是以某種意義上接近實(shí)際事物的抽象形式存在的,但它和真實(shí)的事物有著本質(zhì)的區(qū)別。要描述一個(gè)實(shí)際現(xiàn)象可以有很多種方式,比如錄音,錄像,比喻,傳言等等。為了使描述更具科學(xué)性,邏輯性,客觀性和可重復(fù)性,人們采用一種普遍認(rèn)為比較嚴(yán)格的語(yǔ)言來(lái)描述各種現(xiàn)象,這種語(yǔ)言就是數(shù)學(xué)。使用數(shù)學(xué)語(yǔ)言描述的事物就稱為數(shù)學(xué)模型。有時(shí)候我們需要做一些實(shí)驗(yàn),但這些實(shí)驗(yàn)往往用抽象出來(lái)了的數(shù)學(xué)模型作為實(shí)際物體的代替而進(jìn)行相應(yīng)的實(shí)驗(yàn),實(shí)驗(yàn)本身也是實(shí)際操作的一種理論替代。
應(yīng)用數(shù)學(xué)模型
應(yīng)用數(shù)學(xué)去解決各類實(shí)際問(wèn)題時(shí),建立數(shù)學(xué)模型是十分關(guān)鍵的一步,同時(shí)也是十分困難的一步。建立數(shù)學(xué)模型的過(guò)程,是把錯(cuò)綜復(fù)雜的實(shí)際問(wèn)題簡(jiǎn)化、抽象為合理的數(shù)學(xué)結(jié)構(gòu)的過(guò)程。要通過(guò)調(diào)查、收集數(shù)據(jù)資料,觀察和研究實(shí)際對(duì)象的固有特征和內(nèi)在規(guī)律,抓住問(wèn)題的主要矛盾,建立起反映實(shí)際問(wèn)題的數(shù)量關(guān)系,然后利用數(shù)學(xué)的理論和方法去分析和解決問(wèn)題。這就需要深厚扎實(shí)的數(shù)學(xué)基礎(chǔ),敏銳的洞察力和想象力,對(duì)實(shí)際問(wèn)題的濃厚興趣和廣博的知識(shí)面。數(shù)學(xué)建模是聯(lián)系數(shù)學(xué)與實(shí)際問(wèn)題的橋梁,是數(shù)學(xué)在各個(gè)領(lǐng)域廣泛應(yīng)用的媒介,是數(shù)學(xué)科學(xué)技術(shù)轉(zhuǎn)化的主要途徑,數(shù)學(xué)建模在科學(xué)技術(shù)發(fā)展中的重要作用越來(lái)越受到數(shù)學(xué)界和工程界的普遍重視,它已成為現(xiàn)代科技工作者必備的重要能力之一。為了適應(yīng)科學(xué)技術(shù)發(fā)展的需要和培養(yǎng)高質(zhì)量、高層次科技人才,數(shù)學(xué)建模已經(jīng)在大學(xué)教育中逐步開(kāi)展,國(guó)內(nèi)外越來(lái)越多的大學(xué)正在進(jìn)行數(shù)學(xué)建模課程的教學(xué)和參加開(kāi)放性的數(shù)學(xué)建模競(jìng)賽,將數(shù)學(xué)建模教學(xué)和競(jìng)賽作為高等院校的教學(xué)改革和培養(yǎng)高層次的科技人才的一個(gè)重要方面,許多院校正在將數(shù)學(xué)建模與教學(xué)改革相結(jié)合,努力探索更有效的數(shù)學(xué)建模教學(xué)法和培養(yǎng)面向21世紀(jì)的人才的新思路,與我國(guó)高校的其它數(shù)學(xué)類課程相比,數(shù)學(xué)建模具有難度大、涉及面廣、形式靈活,對(duì)教師和學(xué)生要求高等特點(diǎn),數(shù)學(xué)建模的教學(xué)本身是一個(gè)不斷探索、不斷創(chuàng)新、不斷完善和提高的過(guò)程。為了改變過(guò)去以教師為中心、以課堂講授為主、以知識(shí)傳授為主的傳統(tǒng)教學(xué)模式,數(shù)學(xué)建模課程指導(dǎo)思想是:以實(shí)驗(yàn)室為基礎(chǔ)、以學(xué)生為中心、以問(wèn)題為主線、以培養(yǎng)能力為目標(biāo)來(lái)組織教學(xué)工作。通過(guò)教學(xué)使學(xué)生了解利用數(shù)學(xué)理論和方法去分析和解決問(wèn)題的全過(guò)程,提高他們分析問(wèn)題和解決問(wèn)題的能力;提高他們學(xué)習(xí)數(shù)學(xué)的興趣和應(yīng)用數(shù)學(xué)的意識(shí)與能力,使他們?cè)谝院蟮墓ぷ髦心芙?jīng)常性地想到用數(shù)學(xué)去解決問(wèn)題,提高他們盡量利用計(jì)算機(jī)軟件及當(dāng)代高新科技成果的意識(shí),能將數(shù)學(xué)、計(jì)算機(jī)有機(jī)地結(jié)合起來(lái)去解決實(shí)際問(wèn)題。數(shù)學(xué)建模以學(xué)生為主,教師利用一些事先設(shè)計(jì)好問(wèn)題啟發(fā),引導(dǎo)學(xué)生主動(dòng)查閱文獻(xiàn)資料和學(xué)習(xí)新知識(shí),鼓勵(lì)學(xué)生 積極開(kāi)展討論和辯論,培養(yǎng)學(xué)生主動(dòng)探索,努力進(jìn)取的學(xué)風(fēng),培養(yǎng)學(xué)生從事科研工作的初步能力,培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作的精神、形成一個(gè)生動(dòng)活潑的環(huán)境和氣氛,教學(xué)過(guò)程的重點(diǎn)是創(chuàng)造一個(gè)環(huán)境去誘導(dǎo)學(xué)生的學(xué)習(xí)欲望、培養(yǎng)他們的自學(xué)能力,增強(qiáng)他們的數(shù)學(xué)素質(zhì)和創(chuàng)新能力,提高他們的數(shù)學(xué)素質(zhì),強(qiáng)調(diào)的是獲取新知識(shí)的能力,是解決問(wèn)題的過(guò)程,而不是知識(shí)與結(jié)果。接受參加數(shù)學(xué)建模競(jìng)賽賽前培訓(xùn)的同學(xué)大都需要學(xué)習(xí)諸如數(shù)理統(tǒng)計(jì)、最優(yōu)化、圖論、微分方程、計(jì)算方法、神經(jīng)網(wǎng)絡(luò)、層次分析法、模糊數(shù)學(xué),數(shù)學(xué)軟件包的使用等等“短課程”(或講座),用的學(xué)時(shí)不多,多數(shù)是啟發(fā)性的講一些基本的概念和方法,主要是靠同學(xué)們自己去學(xué),充分調(diào)動(dòng)同學(xué)們的積極性,充分發(fā)揮同學(xué)們的潛能。培訓(xùn)中廣泛地采用的討論班方式,同學(xué)自己報(bào)告、討論、辯論,教師主要起質(zhì)疑、答疑、輔導(dǎo)的作用,競(jìng)賽中一定要使用計(jì)算機(jī)及相應(yīng)的軟件,如Spss,Lingo,Maple,Mathematica,Matlab甚至排版軟件等。
看過(guò)“數(shù)學(xué)建模的意義”的人還看了:
1.構(gòu)建數(shù)學(xué)建模意識(shí)