初中數(shù)學(xué)總復(fù)習(xí)資料有哪些
想了解更多人教版初中數(shù)學(xué)總復(fù)習(xí)資料有哪些嗎?和學(xué)習(xí)啦小編一起看看吧! 以下是學(xué)習(xí)啦小編分享給大家的初中數(shù)學(xué)總復(fù)習(xí)資料的資料,希望可以幫到你!
初中數(shù)學(xué)總復(fù)習(xí)資料一
第七章 相似形
★重點(diǎn)★相似三角形的判定和性質(zhì)
☆內(nèi)容提要☆
一、本章的兩套定理
第一套(比例的有關(guān)性質(zhì)):
涉及概念:①第四比例項(xiàng)②比例中項(xiàng)③比的前項(xiàng)、后項(xiàng),比的內(nèi)項(xiàng)、外項(xiàng)④黃金分割等。
第二套:
注意:①定理中“對(duì)應(yīng)”二字的含義;
?、谄叫?rarr;相似(比例線段)→平行。
二、相似三角形性質(zhì)
1.對(duì)應(yīng)線段…;2.對(duì)應(yīng)周長(zhǎng)…;3.對(duì)應(yīng)面積…。
三、相關(guān)作圖
?、僮鞯谒谋壤?xiàng);②作比例中項(xiàng)。
四、證(解)題規(guī)律、輔助線
1.“等積”變“比例”,“比例”找“相似”。
2.找相似找不到,找中間比。方法:將等式左右兩邊的比表示出來(lái)。⑴
?、?/p>
?、?/p>
3.添加輔助平行線是獲得成比例線段和相似三角形的重要途徑。
4.對(duì)比例問(wèn)題,常用處理方法是將“一份”看著k;對(duì)于等比問(wèn)題,常用處理辦法是設(shè)“公比”為k。
5.對(duì)于復(fù)雜的幾何圖形,采用將部分需要的圖形(或基本圖形)“抽”出來(lái)的辦法處理。
五、 應(yīng)用舉例(略)
初中數(shù)學(xué)總復(fù)習(xí)資料二
第八章 函數(shù)及其圖象
★重點(diǎn)★正、反比例函數(shù),一次、二次函數(shù)的圖象和性質(zhì)。
☆ 內(nèi)容提要☆
一、平面直角坐標(biāo)系
1.各象限內(nèi)點(diǎn)的坐標(biāo)的特點(diǎn)
2.坐標(biāo)軸上點(diǎn)的坐標(biāo)的特點(diǎn)
3.關(guān)于坐標(biāo)軸、原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的特點(diǎn)
4.坐標(biāo)平面內(nèi)點(diǎn)與有序?qū)崝?shù)對(duì)的對(duì)應(yīng)關(guān)系
二、函數(shù)
1.表示方法:⑴解析法;⑵列表法;⑶圖象法。
2.確定自變量取值范圍的原則:⑴使代數(shù)式有意義;⑵使實(shí)際問(wèn)題有
意義。
3.畫(huà)函數(shù)圖象:⑴列表;⑵描點(diǎn);⑶連線。
三、幾種特殊函數(shù)
(定義→圖象→性質(zhì))
1. 正比例函數(shù)
?、哦x:y=kx(k≠0) 或y/x=k。
?、茍D象:直線(過(guò)原點(diǎn))
?、切再|(zhì):①k>0,…②k<0,…
2. 一次函數(shù)
⑴定義:y=kx+b(k≠0)
?、茍D象:直線過(guò)點(diǎn)(0,b)—與y軸的交點(diǎn)和(-b/k,0)—與x軸的交點(diǎn)。
?、切再|(zhì):①k>0,…②k<0,…
?、葓D象的四種情況:
3. 二次函數(shù)
⑴定義:
特殊地, 都是二次函數(shù)。
?、茍D象:拋物線(用描點(diǎn)法畫(huà)出:先確定頂點(diǎn)、對(duì)稱軸、開(kāi)口方向,再對(duì)稱地描點(diǎn))。 用配方法變?yōu)?,則頂點(diǎn)為(h,k);對(duì)稱軸為直線x=h;a>0時(shí),開(kāi)口向上;a<0時(shí),開(kāi)口向下。
?、切再|(zhì):a>0時(shí),在對(duì)稱軸左側(cè)…,右側(cè)…;a<0時(shí),在對(duì)稱軸左側(cè)…,右側(cè)…。
4.反比例函數(shù)
⑴定義: 或xy=k(k≠0)。
?、茍D象:雙曲線(兩支)—用描點(diǎn)法畫(huà)出。
?、切再|(zhì):①k>0時(shí),圖象位于…,y隨x…;②k<0時(shí),圖象位于…,y隨x…;③兩支曲線無(wú)限接近于坐標(biāo)軸但永遠(yuǎn)不能到達(dá)坐標(biāo)軸。
四、重要解題方法
1. 用待定系數(shù)法求解析式(列方程[組]求解)。對(duì)求二次函數(shù)的解析式,要合理選用一般式或頂點(diǎn)式,并應(yīng)充分運(yùn)用拋物線關(guān)于對(duì)稱軸對(duì)稱的特點(diǎn),尋找新的點(diǎn)的坐標(biāo)。如下圖:
2.利用圖象一次(正比例)函數(shù)、反比例函數(shù)、二次函數(shù)中的k、b;a、b、c的符號(hào)。
六、應(yīng)用舉例(略)
初中數(shù)學(xué)總復(fù)習(xí)資料三
第九章 解直角三角形
★重點(diǎn)★解直角三角形
☆ 內(nèi)容提要☆
一、三角函數(shù)
1.定義:在Rt△ABC中,∠C=Rt∠,則sinA= ;cosA= ;tgA= ;ctgA= .
2. 特殊角的三角函數(shù)值:
0° 30° 45° 60° 90°
sinα
cosα
tgα /
ctgα /
3. 互余兩角的三角函數(shù)關(guān)系:sin(90°-α)=cosα;…
4. 三角函數(shù)值隨角度變化的關(guān)系
5.查三角函數(shù)表
二、解直角三角形
1. 定義:已知邊和角(兩個(gè),其中必有一邊)→所有未知的邊和角。
2. 依據(jù):①邊的關(guān)系:
?、诮堑年P(guān)系:A+B=90°
?、圻吔顷P(guān)系:三角函數(shù)的定義。
注意:盡量避免使用中間數(shù)據(jù)和除法。
三、對(duì)實(shí)際問(wèn)題的處理
1. 俯、仰角: 2.方位角、象限角: 3.坡度:
4.在兩個(gè)直角三角形中,都缺解直角三角形的條件時(shí),可用列方程的辦法解決。
四、應(yīng)用舉例(略)
猜你喜歡:
1.初中數(shù)學(xué)期末復(fù)習(xí)計(jì)劃