初一數(shù)學(xué)重點知識總結(jié)歸納
初一數(shù)學(xué)重點知識總結(jié)歸納
其實初一的數(shù)學(xué)不是很難學(xué),只要掌握正確的學(xué)習(xí)方法,以及課后做好知識點的整理,你也可以學(xué)好數(shù)學(xué)。以下是學(xué)習(xí)啦小編分享給大家的初一數(shù)學(xué)重點知識總結(jié),希望可以幫到你!
初一數(shù)學(xué)第一章重點知識總結(jié)
有理數(shù)
1.1 正數(shù)與負數(shù)
在以前學(xué)過的0以外的數(shù)前面加上負號“—”的數(shù)叫負數(shù)(negative number)。
與負數(shù)具有相反意義,即以前學(xué)過的0以外的數(shù)叫做正數(shù)(positive number)(根據(jù)需要,有時在正數(shù)前面也加上“+”)。
1.2 有理數(shù)
正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù)(integer),正分數(shù)和負分數(shù)統(tǒng)稱分數(shù)(fraction)。
整數(shù)和分數(shù)統(tǒng)稱有理數(shù)(rational number)。
通常用一條直線上的點表示數(shù),這條直線叫數(shù)軸(number axis)。
數(shù)軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數(shù)0,這個點叫做原點(origin)。
只有符號不同的兩個數(shù)叫做互為相反數(shù)(opposite number)。(例:2的相反數(shù)是-2;0的相反數(shù)是0)
數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值(absolute value),記作|a|。
一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);0的絕對值是0。兩個負數(shù),絕對值大的反而小。
1.3 有理數(shù)的加減法
有理數(shù)加法法則:
1.同號兩數(shù)相加,取相同的符號,并把絕對值相加。
2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值?;橄喾磾?shù)的兩個數(shù)相加得0。
3.一個數(shù)同0相加,仍得這個數(shù)。
有理數(shù)減法法則:減去一個數(shù),等于加這個數(shù)的相反數(shù)。
1.4 有理數(shù)的乘除法
有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘。任何數(shù)同0相乘,都得0。
乘積是1的兩個數(shù)互為倒數(shù)。
有理數(shù)除法法則:除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。
兩數(shù)相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數(shù),都得0。 mì
求n個相同因數(shù)的積的運算,叫乘方,乘方的結(jié)果叫冪(power)。在a的n次方中,a叫做底數(shù)(base number),n叫做指數(shù)(exponent)。
負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù),0的任何次冪都是0。
把一個大于10的數(shù)表示成a×10的n次方的形式,使用的就是 科學(xué)計數(shù)法。
從一個數(shù)的左邊第一個非0數(shù)字起,到末位數(shù)字止,所有數(shù)字都是這個數(shù)的有效數(shù)字(significant digit)。
初一數(shù)學(xué)第二章重點知識總結(jié)
一元一次方程
2.1 從算式到方程
方程是含有未知數(shù)的等式。
方程都只含有一個未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等號左右兩邊相等的未知數(shù)的值,這個值就是方程的解(solution)。
等式的性質(zhì):
1.等式兩邊加(或減)同一個數(shù)(或式子),結(jié)果仍相等。
2.等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等。
2.2 從古老的代數(shù)書說起——一元一次方程的討論(1)
把等式一邊的某項變號后移到另一邊,叫做移項。
初一數(shù)學(xué)學(xué)第二章重點知識總結(jié)
圖形認識初步
3.1 多姿多彩的圖形
幾何體也簡稱體(solid)。包圍著體的是面(surface)。
3.2 直線、射線、線段
線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。
連接兩點間的線段的長度,叫做這兩點的距離。
3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度
3.4 角的比較與運算
如果兩個角的和等于90度(直角),就說這兩個叫互為余角(compiementary angle),即其中每一個角是另一個角的余角。
如果兩個角的和等于180度(平角),就說這兩個叫互為補角(supplementary angle),即其中每一個角是另一個角的補角。
等角(同角)的補角相等。
等角(同角)的余角相等。
猜你喜歡: