国产成人v爽在线免播放观看,日韩欧美色,久久99国产精品久久99软件,亚洲综合色网站,国产欧美日韩中文久久,色99在线,亚洲伦理一区二区

學習啦>學習方法>教學方法>

小學應用題經(jīng)典例題及解題方法

時間: 文娟843 分享

  應用題是小學數(shù)學學習最頭痛的題目,小學應用題有哪些好的解題方法呢?下面是學習啦小編為大家整理的小學應用題經(jīng)典例題及解題方法,希望對大家有所幫助!

  小學應用題經(jīng)典例題及解題方法總結

  1.已知一張桌子的價錢是一把椅子的10倍,又知一張桌子比一把椅子多288元,一張桌子和一把椅子各多少元?

  解題思路:

  由已知條件可知,一張桌子比一把椅子多的288元,正好是一把椅子價錢的(10-1)倍,由此可求得一把椅子的價錢。再根據(jù)椅子的價錢,就可求得一張桌子的價錢。

  答題:

  解:一把椅子的價錢:

  288÷(10-1)=32(元)

  一張桌子的價錢:

  32×10=320(元)

  答:一張桌子320元,一把椅子32元。

  2. 3箱蘋果重45千克。一箱梨比一箱蘋果多5千克,3箱梨重多少千克?

  解題思路:

  可先求出3箱梨比3箱蘋果多的重量,再加上3箱蘋果的重量,就是3箱梨的重量。

  答題:

  解:45+5×3=45+15=60(千克)

  答:3箱梨重60千克。

  3. 甲乙二人從兩地同時相對而行,經(jīng)過4小時,在距離中點4千米處相遇。甲比乙速度快,甲每小時比乙快多少千米?

  解題思路:

  根據(jù)在距離中點4千米處相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知經(jīng)過4小時相遇。即可求甲比乙每小時快多少千米。

  答題:

  解:4×2÷4=8÷4=2(千米)

  答:甲每小時比乙快2千米。

  4. 李軍和張強付同樣多的錢買了同一種鉛筆,李軍要了13支,張強要了7支,李軍又給張強0.6元錢。每支鉛筆多少錢?

  解題思路:

  根據(jù)兩人付同樣多的錢買同一種鉛筆和李軍要了13支,張強要了7支,可知每人應該得(13+7)÷2支,而李軍要了13支比應得的多了3支,因此又給張強0.6元錢,即可求每支鉛筆的價錢。

  答題:

  解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)

  答:每支鉛筆0.2元。

  5. 甲乙兩輛客車上午8時同時從兩個車站出發(fā),相向而行,經(jīng)過一段時間,兩車同時到達一條河 的兩岸。由于河上的橋正在維修,車輛禁止通行,兩車需交換乘客,然后按原路返回各自出發(fā)的車站,到站時已是下午2點。甲車每小時行40千米,乙車每小時行 45千米,兩地相距多少千米?(交換乘客的時間略去不計)

  解題思路:

  根據(jù)已知兩車上午8時從兩站出發(fā),下午2點返回原車站,可求出兩車所行駛的時間。根據(jù)兩車的速度和行駛的時間可求兩車行駛的總路程。

  答題:

  解:下午2點是14時。

  往返用的時間:14-8=6(時)

  兩地間路程:(40+45)×6÷2=85×6÷2=255(千米)

  答:兩地相距255千米。

  6. 學校組織兩個課外興趣小組去郊外活動。第一小組每小時走4.5千米,第二小組每小時行3.5千米。兩組同時出發(fā)1小時后,第一小組停下來參觀一個果園,用了1小時,再去追第二小組。多長時間能追上第二小組?

  解題思路:

  第一小組停下來參觀果園時間,第二小組多行了[3.5-(4.5-3.5)]?千米,也就是第一組要追趕的路程。又知第一組每小時比第二組快(?4.5-3.5)千米,由此便可求出追趕的時間。

  答題:

  解:第一組追趕第二組的路程:

  3.5-(4.5-?3.5)=3.5-1=2.5(千米)

  第一組追趕第二組所用時間:

  2.5÷(4.5-3.5)=2.5÷1=2.5(小時)

  答:第一組2.5小時能追上第二小組。

  7. 有甲乙兩個倉庫,每個倉庫平均儲存糧食32.5噸。甲倉的存糧噸數(shù)比乙倉的4倍少5噸,甲、乙兩倉各儲存糧食多少噸?

  解題思路:

  根據(jù)甲倉的存糧噸數(shù)比乙倉的4倍少5噸,可知甲倉的存糧如果增加5噸,它的存糧噸數(shù)就是乙倉的4倍,那樣總存糧數(shù)也要增加5噸。若把乙倉存糧噸數(shù)看作1倍,總存糧噸數(shù)就是(4+1)倍,由此便可求出甲、乙兩倉存糧噸數(shù)。

  答題:

  解:乙倉存糧:

  (32.5×2+5)÷(4+1)=(65+5)÷5=70÷5=14(噸)

  甲倉存糧:

  14×4-5=56-5=51(噸)

  答:甲倉存糧51噸,乙倉存糧14噸。

  8. 甲、乙兩隊共同修一條長400米的公路,甲隊從東往西修4天,乙隊從西往東修5天,正好修完,甲隊比乙隊每天多修10米。甲、乙兩隊每天共修多少米?

  解題思路:

  根據(jù)甲隊每天比乙隊多修10米,可以這樣考慮:如果把甲隊修的4天看作和乙隊4天修的同樣多,那么總長度就減少4個10米,這時的長度相當于乙(4+5)天修的。由此可求出乙隊每天修的米數(shù),進而再求兩隊每天共修的米數(shù)。

  答題:

  解:乙每天修的米數(shù):

  (400-10×4)÷(4+5)=(400-40)÷9=360÷9=40(米)

  甲乙兩隊每天共修的米數(shù):

  40×2+10=80+10=90(米)

  答:兩隊每天修90米。

  9. 學校買來6張桌子和5把椅子共付455元,已知每張桌子比每把椅子貴30元,桌子和椅子的單價各是多少元?

  解題思路:

  已知每張桌子比每把椅子貴30元,如果桌子的單價與椅子同樣多,那么總價就應減少30×6元,這時的總價相當于(6+5)把椅子的價錢,由此可求每把椅子的單價,再求每張桌子的單價。

  答題:

  解:每把椅子的價錢:

  (455-30×6)÷(6+5)=(455-180)÷11=275÷11=25(元)

  每張桌子的價錢:

  25+30=55(元)

  答:每張桌子55元,每把椅子25元。

  10. 一列火車和一列慢車,同時分別從甲乙兩地相對開出??燔嚸啃r行75千米,慢車每小時行65千米,相遇時快車比慢車多行了40千米,甲乙兩地相距多少千米?

  解題思路:

  根據(jù)已知的兩車的速度可求速度差,根據(jù)兩車的速度差及快車比慢車多行的路程,可求出兩車行駛的時間,進而求出甲乙兩地的路程。

  答題:

  解:(7+65)×[40÷(75- 65)]=140×[40÷10]=140×4=560(千米)

  答:甲乙兩地相距560千米。

  11. 某玻璃廠托運玻璃250箱,合同規(guī)定每箱運費20元,如果損壞一箱,不但不付運費還要賠償100元。運后結算時,共付運費4400元。托運中損壞了多少箱玻璃?

  解題思路:

  根據(jù)已知托運玻璃250箱,每箱運費20元,可求出應付運費總錢數(shù)。根據(jù)每損壞一箱,不但不付運費還要賠償100元的條件可知,應付的錢數(shù)和實際付的錢數(shù)的差里有幾個(100+20)元,就是損壞幾箱。

  答題:

  解:(20×250-4400)÷(10+20)=600÷120=5(箱)

  答:損壞了5箱。

  12. 五年級一中隊和二中隊要到距學校20千米的地方去春游。第一中隊步行每小時行4千米,第二中隊騎自行車,每小時行12千米。第一中隊先出發(fā)2小時后,第二中隊再出發(fā),第二中隊出發(fā)后幾小時才能追上一中隊?

  解題思路:

  因第一中隊早出發(fā)2小時比第二中隊先行4×2千米,而每小時第二中隊比第一中隊多行(12-4)千米,由此即可求第二中隊追上第一中隊的時間。

  答題:

  解:4×2÷(12-4)=4×2÷8 =1(時)

  答:第二中隊1小時能追上第一中隊。

  13. 某廠運來一堆煤,如果每天燒1500千克,比計劃提前一天燒完,如果每天燒1000千克,將比計劃多燒一天。這堆煤有多少千克?

  解題思路:

  由已知條件可知道,前后燒煤總數(shù)量相差(1500+1000)千克,是由每天相差(1500-1000)千克造成的,由此可求出原計劃燒的天數(shù),進而再求出這堆煤的數(shù)量。

  答題:

  解:原計劃燒煤天數(shù):

  (1500+1000)÷(1500-1000)=2500÷500=5(天)

  這堆煤的重量:

  1500×(5-1)=1500×4=6000(千克)

  答:這堆煤有6000千克。

  14. 媽媽讓小紅去商店買5支鉛筆和8個練習本,按價錢給小紅3.8元錢。結果小紅卻買了8支鉛筆和5本練習本,找回0.45元。求一支鉛筆多少元?

  解題思路:

  小紅打算買的鉛筆和本子總數(shù)與實際買的鉛筆和本子總數(shù)量是相等的,找回0.45 元,說明(8-5)支鉛筆當作(8-5)本練習本計算,相差0.45元。由此可求練習本的單價比鉛筆貴的錢數(shù)。從總錢數(shù)里去掉8個練習本比8支鉛筆貴的錢 數(shù),剩余的則是(5+8)支鉛筆的錢數(shù)。進而可求出每支鉛筆的價錢。

  答題:

  解:每本練習本比每支鉛筆貴的錢數(shù):

  0.45÷(8-5)=0.45÷3=0.15(元)

  8個練習本比8支鉛筆貴的錢數(shù):

  0.15×8=1.2(元)

  每支鉛筆的價錢:

  (3.8-1.2)÷(5+8)=2.6÷13=0.2(元)

  答:每支鉛筆0.2元。

  15. 根據(jù)一輛客車比一輛卡車多載10人,可求6輛客車比6輛卡車多載的人數(shù),即多用的(8-6)輛卡車所載的人數(shù),進而可求每輛卡車載多少人和每輛大客車載多少人。

  解題思路:

  根據(jù)一輛客車比一輛卡車多載10人,可求6輛客車比6輛卡車多載的人數(shù),即多用的(8-6)輛卡車所載的人數(shù),進而可求每輛卡車載多少人和每輛大客車載多少人。

  答題:

  解:卡車的數(shù)量:

  360÷[10×6÷(8-6)]=360÷[10×6÷2]=360÷30=12(輛)

  客車的數(shù)量:

  360÷[10×6÷(8-6)+10]=360÷[30+10]=360÷40=9(輛)

  答:可用卡車12輛,客車9輛。

  16. 某筑路隊承擔了修一條公路的任務。原計劃每天修720米,實際每天比原計劃多修80米,這樣實際修的差1200米就能提前3天完成。這條公路全長多少米?

  解題思路:

  根據(jù)計劃每天修720米,這樣實際提前的長度是(720×3-1200)米。根據(jù)每天多修80米可求已修的天數(shù),進而求公路的全長。

  答題:

  解:已修的天數(shù):

  (720×3-1200)÷80=960÷80=12(天)

  公路全長:

  (720+80)×12+1200=800×12+1200=9600+1200=10800(米)

  答:這條公路全長10800米。

  17. 某鞋廠生產(chǎn)1800雙鞋,把這些鞋分別裝入12個紙箱和4個木箱。如果3個紙箱加2個木箱裝的鞋同樣多。每個紙箱和每個木箱各裝鞋多少雙?

  解題思路:

  根據(jù)已知條件,可求12個紙箱轉化成木箱的個數(shù),先求出每個木箱裝多少雙,再求每個紙箱裝多少雙。

  答題:

  解:12個紙箱相當木箱的個數(shù):

  2×(12÷3)=2×4=8(個)

  一個木箱裝鞋的雙數(shù):

  1800÷(8+4)=18000÷12=150(雙)

  一個紙箱裝鞋的雙數(shù):

  150×2÷3=100(雙)

  答:每個紙箱可裝鞋100雙,每個木箱可裝鞋150雙

  18. 某工地運進一批沙子和水泥,運進沙子袋數(shù)是水泥的2倍。每天用去30袋水泥,40袋沙子,幾天以后,水泥全部用完,而沙子還剩120袋,這批沙子和水泥各多少袋?

  解題思路:

  由已知條件可知道,每天用去30袋水泥,同時用去30×2袋沙子,才能同時用完。但現(xiàn)在每天只用去40袋沙子,少用(30×2-40)袋,這樣才累計出120袋沙子。因此看120袋里有多少個少用的沙子袋數(shù),便可求出用的天數(shù)。進而可求出沙子和水泥的總袋數(shù)。

  答題:

  解:水泥用完的天數(shù):

  120÷(30×2-40)=120÷20=6(天)

  水泥的總袋數(shù):

  30×6=180(袋)

  沙子的總袋數(shù):

  180×2=360(袋)

  答:運進水泥180袋,沙子360袋。

  19. 學校里買來了5個保溫瓶和10個茶杯,共用了90元錢。每個保溫瓶是每個茶杯價錢的4倍,每個保溫瓶和每個茶杯各多少元?

  解題思路:

  根據(jù)每個保溫瓶的價錢是每個茶杯的4倍,可把5個保溫瓶的價錢轉化為20個茶杯的價錢。這樣就可把5個保溫瓶和10個茶杯共用的90元錢,看作30個茶杯共用的錢數(shù)。

  答題:

  解:每個茶杯的價錢:

  90÷(4×5+10)=3(元)

  每個保溫瓶的價錢:

  3×4=12(元)

  答:每個保溫瓶12元,每個茶杯3元。

  20. 兩個數(shù)的和是572,其中一個加數(shù)個位上是0,去掉0后,就與第二個加數(shù)相同。這兩個數(shù)分別是多少?

  解題思路:

  已知一個加數(shù)個位上是0,去掉0,就與第二個加數(shù)相同,可知第一個加數(shù)是第二個加數(shù)的10倍,那么兩個加數(shù)的和572,就是第二個加數(shù)的(10+1)倍。

  答題:

  解:第一個加數(shù):

  572÷(10+1)=52

  第二個加數(shù):

  52×10=520

  答:這兩個加數(shù)分別是52和520。

  21. 一桶油連桶重16千克,用去一半后,連桶重9千克,桶重多少千克?

  解題思路:

  由已知條件可知,16千克和9千克的差正好是半桶油的重量。9千克是半桶油和桶的重量,去掉半桶油的重量就是桶的重量。

  答題:

  解:9-(16-9)=9-7=2(千克)

  答:桶重2千克。

  22. 一桶油連桶重10千克,倒出一半后,連桶還重5.5千克,原來有油多少千克?

  解題思路:

  由已知條件可知,10千克與5.5千克的差正好是半桶油的重量,再乘以2就是原來油的重量。

  答題:

  解:(10-5.5)×2=9(千克)

  答:原來有油9千克。

  23. 用一只水桶裝水,把水加到原來的2倍,連桶重10千克,如果把水加到原來的5倍,連桶重22千克。桶里原有水多少千克?

  解題思路:

  由已知條件可知,桶里原有水的(5-2)倍正好是(22-10)千克,由此可求出桶里原有水的重量。

  答題:

  解:(22-10)÷(5-2)=12÷3=4(千克)

  答:桶里原有水4千克。

  24. 小紅和小華共有故事書36本。如果小紅給小華5本,兩人故事書的本數(shù)就相等,原來小紅和小華各有多少本?

  解題思路:

  從“小紅給小華5本,兩人故事書的本數(shù)就相等”這一條件,可知小紅比小華多(5×2)本書,用共有的36本去掉小紅比小華多的本數(shù),剩下的本數(shù)正好是小華本數(shù)的2倍。

  答題:

  解:小華有書的本數(shù):

  (36-5×2)÷2=13(本)

  小紅有書的本數(shù):

  13+5×2=23(本)

  答:原來小紅有23本,小華有13本。

  25. 有5桶油重量相等,如果從每只桶里取出15千克,則5只桶里所剩下油的重量正好等于原來2桶油的重量。原來每桶油重多少千克?

  解題思路:

  由已知條件知,5桶油共取出(15×5)千克。由于剩下油的重量正好等于原來2桶油的重量,可以推出(5-2)桶油的重量是(15×5)千克。

  答題:

  解:15×5÷(5-2)=25(千克)

  答:原來每桶油重25千克。

1537872