二次根式導(dǎo)學(xué)案人教版
二次根式導(dǎo)學(xué)案人教版
一般地,形如√a的代數(shù)式叫做二次根式,其中,a 叫做被開方數(shù)。下面學(xué)習(xí)啦小編給你分享二次根式導(dǎo)學(xué)案人教版,歡迎閱讀。
二次根式導(dǎo)學(xué)案人教版
一.學(xué)習(xí)目標(biāo):
1.了解并熟記二次根式的概念,理解二次根式的意義并能確定被開方數(shù)中字母的取值范圍;
2.理解公式(a)2=a(a≥0),并能利用公式進(jìn)行一般的二次根式的化簡.
二.學(xué)習(xí)重點(diǎn):二次根式的定義.
學(xué)習(xí)難點(diǎn):二次根式的性質(zhì) .
三.教學(xué)過程
想一想:
1.平方根的定義: .
2.一個(gè)正數(shù)有 個(gè)平方根,它們 ;0的平方根是 ;負(fù)數(shù) .
3.算術(shù)平方根的定義: .
算一算:
1.圓的面積為S,則圓的半徑是 .
2.正方形的面積為b-3,則邊長為 .
3.在Rt△ABC中,∠B=90°.若AB=50m,BC= m,則AC= m
對上面各題的結(jié)果,你能發(fā)現(xiàn)它們有什么共同的特征嗎?
定義: 一般地,式子_____(a≥0)叫做二次根式,a叫做___________,“ ”稱為二次根號(hào).
二次根式應(yīng)滿足兩個(gè)條件:① ;② .
試一試:
1.下列式子,哪些是二次根式,哪些不是二次根式?
2、 、1x、x (x>0)、-12、0、a2+5、-5、1x+y、x+y (x≥0,y≥0)、xy.
2.a取何值時(shí),下列二次根式有意義.
(1)a+1 (2) 1-10a (3)1a-3 (4)a2+1 (5)-(3-a)2 (6)x-1+1-x
議一議:
?、?1有算術(shù)平方根嗎?② 0的算術(shù)平方根是多少?
?、?當(dāng)a<0時(shí),a有意義嗎?為什么?
④ 當(dāng)a≥0,a可能為負(fù)數(shù)嗎?為什么?
所以,你得出的結(jié)論是:a .(a ) .
動(dòng)一動(dòng):
1.已知1+x+5-y=0,則x+y的值為 .
2.(10 廣安)若x-2y+y+2=0,則xy的值為 .
3.(11 內(nèi)蒙古) ,則xy= .
4.(11 日照)已知x,y為實(shí)數(shù),且滿足 =0,那么x2011-y2011= .
二次根式性質(zhì)的探索:
22=4,即(4)2= 4; 32=9,即(9)2= 9,同樣地,(2)2= 2,(5)2= 5,……
你能用一般式來表示這樣的規(guī)律嗎?
.
?、?計(jì)算.
(-5)2=_______; (2a)2 =_______ ; (32)2=_______; (ab)2 =_______;
(23)2= _______;(72)2 =________; (a2)2 =______; (a2+b2)2 =______.
Ⅱ.把下列各非負(fù)數(shù)數(shù)寫成一個(gè)正數(shù)的平方形式.
(1)3; (2)5; (3)9y2; (3)2x2.
四.課內(nèi)反饋:
1.下列式子中,是二次根式的是 ( )
A.-7 B. C.x D.x
2. 下列說法中,正確的是 ( )
A.帶根號(hào)的式子一定是二次根式 B.代數(shù)式x2+1一定是二次根式
C.代數(shù)式x+y一定是二次根式 D.二次根式的值必是無理數(shù)
3. 要使下列式子有意義,x的取值范圍是什么?
(1) ; (2) ;
(3) ; (4) .
4. 已知 ,則x+y= ;化簡 =_______.
5. 計(jì)算:
?、?-3)2 -(-32)2; ②(2)2-16+(-5)2;
③(32)2-6179+(π-47)0 ; ④ (a+b)2-(a-2b)2 (a+b≥0,a-2b≥0) .
6. 若二次根式 有意義,化簡│x-4│-│7-x│.
課外延伸:
1. 若 + 有意義,則 =_______.
2.使式子 有意義的未知數(shù)x有 ( )
A.0個(gè) B.1個(gè) C.2個(gè) D.無數(shù)個(gè)
3.(10 綿陽)要使 有意義,則x應(yīng)滿足 ( )
A.12≤x≤3 B.x≤3且x≠12 C. 12
4.(10 茂名)若代數(shù)式 有意義,則x的取值范圍是 ( )
A.x>1且x≠2 B.x≥1 C.x≠2 D.x≥1且x≠2
5.(10 荊門)若a、b為實(shí)數(shù),且滿足│a-2│+ =0,則b-a的值為 ( )
A.2 B.0 C.-2 D.以上都不對
6.(11濟(jì)寧)若 ,則 的值為 ( )
A.1 B.-1 C.7 D.-7
7.(11 宜賓)根式 中x的取值范圍是 ( )
A.x≥3 B.x≤3 C.x<3 D.x>3
8.(11 濱州)若二次根式 有意義,則的取值范圍為 ( )
A. x≥12 B. x≤12 C. x≥12 D. x≤12
9.(11 菏澤)使 有意義的x的取值范圍是 .
10. (11 黃岡)要使式子a+2 a有意義,則a的取值范圍為_____________________.
11. (11 荊州)若等式 成立,則x的取值范圍是 .
12.(10 益陽)已知 ,求代數(shù)式 的值.
13.已知a、b為實(shí)數(shù),且 +2 =b+4,求a、b的值.
二次根式教學(xué)反思
在二次根式這一章的學(xué)習(xí)中,重點(diǎn)是是掌握二次根式的運(yùn)算,教學(xué)的關(guān)鍵是理解二次根式的性質(zhì),這塊教學(xué)內(nèi)容是在第十二章實(shí)數(shù)的基礎(chǔ)上,著重研究二次根式,二次根式教學(xué)反思。在本章教學(xué)中,存在以下問題:
1、在教學(xué)設(shè)計(jì)中,仍然存在著對學(xué)情分析不足,主要是過高估計(jì)學(xué)生的學(xué)習(xí)能力,一方面每節(jié)課設(shè)計(jì)的教學(xué)內(nèi)容過多,經(jīng)常一節(jié)課結(jié)束后還有不少內(nèi)容沒有完成,另一方面對以前學(xué)過的知識(shí)的復(fù)習(xí)工作做的不夠,導(dǎo)致后續(xù)的新知識(shí)的學(xué)習(xí)遇到不少麻煩。如對二次根式的性質(zhì)的應(yīng)用時(shí),考慮到以前已經(jīng)學(xué)過,自以為學(xué)生不存在困難,就沒有重點(diǎn)分析,結(jié)果導(dǎo)致不少學(xué)生在二次根式的化簡過程中因此而出錯(cuò)。
2、在促進(jìn)學(xué)生探索求知和有效學(xué)習(xí)方面還存在明顯不足。新的教學(xué)理念要求教師在課堂教學(xué)中注意引導(dǎo)學(xué)生探究學(xué)習(xí),在我的課堂教學(xué)中,經(jīng)常為了完成教學(xué)任務(wù)而忽視這方面的引導(dǎo)。在本章中,其實(shí)有許多內(nèi)容可以進(jìn)行這方面的嘗試。如判斷二次根式中字母的取值范圍、選取有理化因式、選擇不同的運(yùn)算途徑等都可以讓學(xué)生進(jìn)行探究和歸納。在二次根式的運(yùn)算中我就直接告訴學(xué)生:加減運(yùn)算時(shí)利用公式,乘除時(shí)利用公式和,結(jié)果大部分學(xué)生并不接受。若能讓學(xué)生在探究的基礎(chǔ)上歸納出方法,學(xué)習(xí)的效果會(huì)提高很多,學(xué)習(xí)的能力也會(huì)不斷提高。
3、在學(xué)生的學(xué)習(xí)方面,也有值得反思的地方我班的學(xué)生在老師指導(dǎo)下學(xué)習(xí)數(shù)學(xué)方面的積極性并不差,但自主學(xué)習(xí)方面還存在著不足。遇到困難有畏難情緒、對老師的依賴性太強(qiáng)、作業(yè)只求完成率而不講質(zhì)量、學(xué)習(xí)的競爭意識(shí)和自我要求明顯缺乏。這些都有待于在今后的教學(xué)中進(jìn)行教育和引導(dǎo),加強(qiáng)改進(jìn),提高教學(xué)實(shí)效。
二次根式教學(xué)反思
數(shù)學(xué)的教學(xué)目標(biāo),不僅僅是讓學(xué)生學(xué)習(xí)到一些知識(shí),更重要的是讓學(xué)生學(xué)會(huì)運(yùn)用數(shù)學(xué)知識(shí)、思維與方法,解決現(xiàn)實(shí)問題。同時(shí)感受到數(shù)學(xué)的意義和價(jià)值。我們要樹立一種大數(shù)學(xué)的教學(xué)觀,這就要我們的教學(xué)空間開放,不僅要在課堂教學(xué)時(shí)努力體現(xiàn)從問題情景出發(fā),建立模型,應(yīng)用與推廣基本流程。通過觀察、操作、思考交流等活動(dòng)逐步增強(qiáng)學(xué)生的應(yīng)用意識(shí),使學(xué)生認(rèn)識(shí)到數(shù)學(xué)與現(xiàn)實(shí)世界的聯(lián)系。更重要的是安排多種可供選擇的教學(xué)活動(dòng),例如:課前的調(diào)查與實(shí)踐,課后的數(shù)學(xué)探究和實(shí)踐活動(dòng),寫數(shù)學(xué)筆記等。讓學(xué)生在社會(huì)實(shí)踐中發(fā)現(xiàn)數(shù)學(xué),探究數(shù)學(xué)和應(yīng)用數(shù)學(xué)。
它山之石,可以攻玉。我今后一定要多參加其他教師的觀摩課,在觀摩時(shí)應(yīng)該多分析其他教師是如何組織教學(xué)的。他們?yōu)槭裁催@樣組織教學(xué)?假如讓我來上這節(jié)課,我的課堂環(huán)節(jié)和課堂效果與他們的課堂效果比結(jié)果如何,他們有哪些優(yōu)點(diǎn)可以借鑒,有哪些失誤之處可以改之。如果遇到課堂偶發(fā)事件,我會(huì)如何處理……通過這樣的反思分析從他的教學(xué)中得到啟發(fā),從而提高自己的課堂效果。
另外,要經(jīng)常引導(dǎo)學(xué)生進(jìn)行反思。如果每次都是簡單做一做,學(xué)生很快就會(huì)有厭煩情緒。所以在引導(dǎo)學(xué)生這樣做時(shí),要給予其恰當(dāng)?shù)墓膭?lì)和啟示、評價(jià)。讓學(xué)生體會(huì)到自己這樣做的好處,使他們在這樣做的過程中得到激勵(lì)和啟示,并在后面的學(xué)習(xí)中有成功感。所以要大力表揚(yáng)那些認(rèn)真思考的同學(xué),如對于一道難題,不管是自己解決還是和別人共同解決出來的,我都會(huì)讓學(xué)生理清一下思路,思考這類題的解法,如果學(xué)生不會(huì)解,聽老師講解后明白了,我會(huì)讓學(xué)生反思一下原因,為什么當(dāng)時(shí)不會(huì)解,是什么原因造成的?學(xué)生只有對自己進(jìn)行反思總結(jié),就會(huì)收到意想不到的學(xué)習(xí)效果,使學(xué)生領(lǐng)悟生活和學(xué)習(xí)思想、方法,優(yōu)化自己的知識(shí)結(jié)構(gòu),發(fā)展思維能力,培養(yǎng)創(chuàng)新意識(shí)。
在二次根式這一章的學(xué)習(xí)中,重點(diǎn)是是掌握二次根式的運(yùn)算,教學(xué)的關(guān)鍵是理解二次根式的性質(zhì),教學(xué)內(nèi)容是著重研究二次根式(十六年前的回憶教學(xué)反思)。在本章教學(xué)中,存在以下問題:
1、在教學(xué)過程中仍然存在過高估計(jì)學(xué)生的學(xué)習(xí)能力,每節(jié)課設(shè)計(jì)的教學(xué)內(nèi)容過多,經(jīng)常一節(jié)課結(jié)束后還有不少內(nèi)容沒有完成,如對二次根式的性質(zhì)的應(yīng)用時(shí),考慮到以前已經(jīng)學(xué)過,自以為學(xué)生不存在困難,就沒有重點(diǎn)分析,結(jié)果導(dǎo)致不少學(xué)生在二次根式的化簡過程中因此而出錯(cuò)。
2、在二次根式的化簡中,新教材特別要求引導(dǎo)學(xué)生注意二次根式中字母的取值范圍,要求培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度和推斷字母取值范圍的能力。剛開始對這一要求理解不到位,沒有對學(xué)生提出明確要求,也沒有重視對典型錯(cuò)誤的分析。
二次根式教學(xué)反思二次根式教學(xué)反思3、在學(xué)生的學(xué)習(xí)方面,也有值得反思的地方我班的學(xué)生在老師指導(dǎo)下學(xué)習(xí)數(shù)學(xué)方面的積極性并不差,但自主學(xué)習(xí)方面還存在著不足。遇到困難有畏難情緒、對老師的依賴性太強(qiáng)、作業(yè)只求完成率而不講質(zhì)量、學(xué)習(xí)的競爭意識(shí)和自我要求明顯缺乏。這些都有待于在今后的教學(xué)中進(jìn)行教育和引導(dǎo)。
基于上面的諸多因素,我班學(xué)生在學(xué)習(xí)還不夠理想,在本章單元測驗(yàn)中,體現(xiàn)高分比以往減少,不及格人數(shù)明顯增加,平均分大幅降低。因此在今后的教學(xué)工作中要加強(qiáng)改進(jìn),提高教學(xué)實(shí)效。
“好的開始是成功的一半,在課的起始階段,迅速集中學(xué)生的注意力,把他們思緒帶進(jìn)特定的學(xué)習(xí)情境中,激發(fā)起學(xué)生濃厚的學(xué)習(xí)興趣和強(qiáng)烈的求知欲,對這堂課教學(xué)的成敗與否起著至關(guān)重要的作用。可有效地開啟學(xué)生思維的閘門,激發(fā)聯(lián)想,激勵(lì)探究,使學(xué)生的學(xué)習(xí)狀態(tài)由被動(dòng)變?yōu)橹鲃?dòng),使學(xué)生在輕松愉悅的氛圍中學(xué)到知識(shí)。
二次根式是在數(shù)的開方、實(shí)數(shù)的基礎(chǔ)上進(jìn)一步學(xué)習(xí)式的概念,是后繼學(xué)習(xí)無理式以及解決物理方程的一個(gè)基礎(chǔ)。但是二次根式與無理式是有區(qū)別的,前者主要在形式上是否是單一的帶有二次根號(hào),而后者則更注重對字母的運(yùn)算。本章學(xué)習(xí)的核心概念是最賤二次根式及其化簡,本章可以聯(lián)系學(xué)生所學(xué)習(xí)的不等式、因式分解、解方程、代數(shù)式有意義的條件等知識(shí)點(diǎn)。學(xué)生學(xué)習(xí)的易錯(cuò)點(diǎn)還是由數(shù)到式的過度上,特別是二次根式的被開方式必須是非負(fù)數(shù)這一點(diǎn),對于復(fù)雜的式子,學(xué)生很難把握,尤其是對符號(hào)的把握和理解,需要強(qiáng)化聯(lián)系,講解時(shí)注意和具體數(shù)的練習(xí),把握其內(nèi)在的道理,讓學(xué)生明白是如何由易到難的轉(zhuǎn)化。同時(shí)#from 二次根式教學(xué)反思來自學(xué)優(yōu)網(wǎng)http://www.gkstk.com/ end#,本章也是規(guī)范學(xué)生正確書寫書寫符號(hào)以及提高學(xué)生運(yùn)算能力的一章。
本節(jié)課開始時(shí),首先由一個(gè)求修建兩塊運(yùn)動(dòng)場的草坪面積的實(shí)際問題出發(fā),引導(dǎo)學(xué)生得出兩個(gè)二次根式求和的運(yùn)算。從而提出問題:如何進(jìn)行二次根式的加減運(yùn)算?這樣通過問題指向本課研究的重點(diǎn),激發(fā)學(xué)生的學(xué)習(xí)興趣和強(qiáng)烈的求知欲望。然后指導(dǎo)學(xué)生根據(jù)問題導(dǎo)讀單,去自學(xué)課本。通過自學(xué)課本再完成問題導(dǎo)讀單,從而自己獨(dú)立學(xué)習(xí)結(jié)合小組合作學(xué)習(xí)掌握二次根式的加減運(yùn)算。通過我深入小組搜集信息、指導(dǎo)學(xué)習(xí),發(fā)現(xiàn)學(xué)生具備自學(xué)能力,獨(dú)立自學(xué)時(shí)很肅靜,同學(xué)們都能夠通過翻閱課本自己獨(dú)立完成問題導(dǎo)讀單上的一些問題。合作學(xué)習(xí)時(shí)也很熱鬧,同學(xué)們都能夠交流自己的見解,并且能夠針對一些見解提出自己的看法讓大家評議。
總之,本節(jié)課我感覺同學(xué)們學(xué)習(xí)的效果非常好,學(xué)習(xí)氣氛濃厚,能夠自主合作探究學(xué)習(xí)。
1、在教學(xué)設(shè)計(jì)中,仍然存在著對學(xué)情分析不足,主要是過高估計(jì)學(xué)生的學(xué)習(xí)能力,一方面每節(jié)課設(shè)計(jì)的教學(xué)內(nèi)容過多,經(jīng)常一節(jié)課結(jié)束后還有不少內(nèi)容沒有完成,另一方面對以前學(xué)過的知識(shí)的復(fù)習(xí)工作做的不夠,導(dǎo)致后續(xù)的新知識(shí)的學(xué)習(xí)遇到不少麻煩。如對二次根式的性質(zhì)的應(yīng)用時(shí),考慮到以前已經(jīng)學(xué)過,自以為學(xué)生不存在困難,就沒有重點(diǎn)分析,結(jié)果導(dǎo)致不少學(xué)生在二次根式的化簡過程中因此而出錯(cuò)。
二次根式教學(xué)反思
二次根式教學(xué)反思文章二次根式教學(xué)反思出自http://www.gkstk.com/article/wk-35984353732779.html,轉(zhuǎn)載請保留此鏈接!本節(jié)內(nèi)容是在前一節(jié)二次根式的學(xué)習(xí)基礎(chǔ)上,在熟練計(jì)算積的算術(shù)平方根的情況下,學(xué)習(xí)商的算術(shù)平方根的性質(zhì),同時(shí)為分母有理化作準(zhǔn)備。所以在教學(xué)中更應(yīng)注重積和商的互相轉(zhuǎn)換,讓學(xué)生通過具體實(shí)例再結(jié)合積的性質(zhì),對比、歸納得到商的二次根式的性質(zhì)。在此,過程中給予適當(dāng)?shù)闹笇?dǎo),提出問題讓學(xué)生有一定的探索方向。這一部分的教學(xué)我主要是從以下幾點(diǎn)進(jìn)行的:
1、注意了對平方根和算術(shù)平方根的復(fù)習(xí),從而引入了二次根式的乘除法則,得到了二次根式乘除法的計(jì)算方法,和計(jì)算公式。公式就是工具,工具順手了工作就快就有效率。因此,在這里讓學(xué)生進(jìn)行了大量的練習(xí),熟練公式,打好基礎(chǔ)。
2、注意了二次根式乘除法的計(jì)算公式的逆用??偨Y(jié)了乘法公式的逆用就是用來使“被開方數(shù)中不含能開的盡方的因數(shù)或因式,除法公式的逆用就是用來使“被開方數(shù)不含分母,從而保證了結(jié)果是最簡二次根式。注重方法的傳授。
3、教學(xué)中強(qiáng)調(diào)了前面學(xué)過的運(yùn)算法則和運(yùn)算律對二次根式同樣適用,反映了數(shù)學(xué)理論的一貫性,使學(xué)生在學(xué)習(xí)中感到所學(xué)并不難。在教學(xué)中,充分利用教材內(nèi)容,結(jié)合實(shí)際問題提高學(xué)生的學(xué)習(xí)積極性。
4、教學(xué)中不僅要抓整體,更要注意一些重要細(xì)節(jié)。在學(xué)生做題過程中讓學(xué)生用心總結(jié)一些簡單值和特殊值的乘除和化簡的方法。教材中淡化計(jì)算過程,這里也透露出教材的一個(gè)特點(diǎn):很重視學(xué)生思維上的培養(yǎng),卻忽視了基本計(jì)算能力的訓(xùn)練,似乎認(rèn)為每個(gè)學(xué)生都能達(dá)到一學(xué)就會(huì)的理想境界?;A(chǔ)好和反應(yīng)快的學(xué)生沒有問題,但并不是都是這樣,教師就要讓學(xué)生了解計(jì)算過程每一步的由來。
本節(jié)內(nèi)容是在前一節(jié)二次根式的學(xué)習(xí)基礎(chǔ)上,要求學(xué)生能熟練運(yùn)用乘法法則和除法法則進(jìn)行化簡和計(jì)算。在教學(xué)過程中,通過一些特殊的例子讓學(xué)生歸納出乘法法則和除法法則,學(xué)生比較容易接受。但是在具體進(jìn)行化簡和計(jì)算的過程中,學(xué)生對二次根式乘法法則和除法法則理解上問題不大,但常常忘記計(jì)算結(jié)果需要化簡,此外被開方數(shù)是多項(xiàng)式的乘除法運(yùn)算上容易出現(xiàn)錯(cuò)誤,對分母有理化還不夠熟練。因此還要加強(qiáng)訓(xùn)練,否則,在下一節(jié)二次根式的加減和混合運(yùn)算時(shí)出現(xiàn)的錯(cuò)誤會(huì)更多。
總之,二次根式的乘除運(yùn)算法則的學(xué)習(xí)和應(yīng)用的過程中,滲透分析、概括、類比等數(shù)學(xué)思想方法,提高學(xué)生的思維品質(zhì)和學(xué)習(xí)興趣,鼓勵(lì)學(xué)生大膽猜想,積極探索,運(yùn)用類比、歸納和從特殊到一般的思考方法激發(fā)學(xué)生創(chuàng)造性的思維。
這節(jié)課教學(xué)困難重重,因?yàn)榻?jīng)過一個(gè)星期的了解,整個(gè)班學(xué)生八年級升九年級的期末考試數(shù)學(xué)科目最高分56分,于是五十幾分的就成了本班的數(shù)學(xué)寶貝了,可五十幾分包括56分只有四人,三十幾分也沒幾個(gè),其他了都是二十幾以下了,學(xué)生已有的的數(shù)學(xué)基礎(chǔ)少得可憐,所以學(xué)生學(xué)習(xí)起來很困難,教學(xué)也寸步難行,雖然本節(jié)課的重點(diǎn)是二次根式的乘除法法則,難點(diǎn)是靈活運(yùn)用法則進(jìn)行計(jì)算和化簡,但是學(xué)生難明白只能放慢進(jìn)度,學(xué)生學(xué)會(huì)一點(diǎn)點(diǎn),極少數(shù)的人掌握了都成了我堅(jiān)持的理由。
教學(xué)的開始從小學(xué)的口訣復(fù)習(xí)引入,進(jìn)入兩個(gè)相同的數(shù)相乘用某數(shù)的平方表示的學(xué)習(xí),才真正進(jìn)入九年級探究將二次根式的性質(zhì)反過來就是二次根式的乘除法法則,利用這個(gè)法則進(jìn)行二次根式的乘法和除法運(yùn)算。
有了事先復(fù)習(xí)有關(guān)知識(shí)學(xué)生就比較容易理解這兩個(gè)法則,下面課本例2,主要是讓學(xué)生通過看課本來理解法則的應(yīng)用,在學(xué)生理解例題的基礎(chǔ)上,讓學(xué)生思考還有沒有其他方法來解決這些題目,以此來增加學(xué)生解題的思路與方法。在這里增加多一些簡單的題目,從中可以拿出一兩個(gè)題目來點(diǎn)撥。
如 ,可以有兩種解法:
二次根式教學(xué)反思教學(xué)反思法一:一種是課本上的方法,是直接利用了二次根式的乘法法則。
法二:利用了二次根式的性質(zhì)。
通過這個(gè)題目的講解,可讓學(xué)生靈活掌握二次根式的計(jì)算方法。
二次根式的乘除法混合運(yùn)算,課本上的習(xí)題21.2綜合運(yùn)用第6題的第(4)小題 ,通過這個(gè)例子本想引出一個(gè)混合運(yùn)算的公式,但學(xué)生接受不了,只好趨向特別簡單的。
本節(jié)課中的難點(diǎn)是對計(jì)算中化簡,特別是分母中含有根號(hào)的式子不會(huì)化簡,還有被開方數(shù)是小數(shù)的,這應(yīng)該牽涉到分母有理化,分母有理化這個(gè)概念本章課本中沒有提及,但是課后練習(xí)和習(xí)題中也有涉及,又得多利用一個(gè)課時(shí)處理。剩下的時(shí)間我主要讓學(xué)生進(jìn)行了重復(fù)課堂中學(xué)習(xí)的內(nèi)容的練習(xí),讓學(xué)生上黑板展示自己的作法,不正確的進(jìn)行點(diǎn)評,到下課時(shí),少數(shù)學(xué)生基本掌握了二次根式的乘除法的計(jì)算。
本節(jié)課發(fā)現(xiàn)學(xué)生依賴性很強(qiáng),明明本節(jié)課需要七、八年級的有關(guān)知識(shí)忘了,從不課前預(yù)習(xí),就算老師提醒了課本也在眼前就是懶得翻,甚至不知道在課本的什么地方,基本是教師的幫助學(xué)生才能得以往下學(xué),因此教學(xué)互動(dòng)環(huán)節(jié)進(jìn)行很艱難,二十幾分鐘左右一般只能解決一個(gè)小題,進(jìn)度很慢。因此要讓基礎(chǔ)如此差的孩子們學(xué)生不依賴?yán)蠋煟茏杂X學(xué)習(xí)數(shù)學(xué),是今后要挑戰(zhàn)的問題。