国产成人v爽在线免播放观看,日韩欧美色,久久99国产精品久久99软件,亚洲综合色网站,国产欧美日韩中文久久,色99在线,亚洲伦理一区二区

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 教學(xué)方法 > 初一數(shù)學(xué)教學(xué)教案

初一數(shù)學(xué)教學(xué)教案

時(shí)間: 欣怡1112 分享

初一數(shù)學(xué)教學(xué)教案

  數(shù)學(xué)教學(xué)教案師教學(xué)過程中必不可少的工具,想要提高教學(xué)質(zhì)量,一份教案少不了。以下是學(xué)習(xí)啦小編分享給大家的初一數(shù)學(xué)教學(xué)教案的資料,希望可以幫到你!

  初一數(shù)學(xué)教學(xué)教案一

  多項(xiàng)式除以單項(xiàng)式

  教學(xué)建議

  知識結(jié)構(gòu)

  重點(diǎn)、難點(diǎn)分析

  重點(diǎn)是多項(xiàng)式除以單項(xiàng)式的法則及其應(yīng)用。多項(xiàng)式除以單項(xiàng)式,其基本方法與步驟是化歸為單項(xiàng)式除以單項(xiàng)式,結(jié)果仍是多項(xiàng)式,其項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)相同。因此多項(xiàng)式除以單項(xiàng)式的運(yùn)算關(guān)鍵是將它轉(zhuǎn)化為單項(xiàng)式除法的運(yùn)算,再準(zhǔn)確應(yīng)用相關(guān)的運(yùn)算法則。

  難點(diǎn)是理解法則導(dǎo)出的根據(jù)。根據(jù)除法是乘法的逆運(yùn)算可知,多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則的實(shí)質(zhì)是把多項(xiàng)式除以單項(xiàng)式的的運(yùn)算轉(zhuǎn)化為單項(xiàng)式的除法運(yùn)算。由于,故多項(xiàng)式除以單項(xiàng)式的法則也可以看做是乘法對加法的分配律的應(yīng)用。

  教法建議

  (1)多項(xiàng)式除以單項(xiàng)式運(yùn)算的實(shí)質(zhì)是把多項(xiàng)式除以單項(xiàng)式的運(yùn)算轉(zhuǎn)化為單項(xiàng)式的除法運(yùn)算,因此建議在學(xué)習(xí)本課知識之前對單項(xiàng)式的除法運(yùn)算進(jìn)行復(fù)習(xí)鞏固。

  (2)多項(xiàng)式除以單項(xiàng)式所得商的項(xiàng)數(shù)與這個(gè)多項(xiàng)式的項(xiàng)數(shù)相同,不要漏項(xiàng)。

  (3)要熟練地進(jìn)行多項(xiàng)式除以單項(xiàng)式的運(yùn)算,必須掌握它的基本運(yùn)算,冪的運(yùn)算性質(zhì)是整式乘除法的基礎(chǔ),只要抓住這關(guān)鍵的一步,才能準(zhǔn)確地進(jìn)行多項(xiàng)式除以單項(xiàng)式的運(yùn)算。

  (4)符號仍是運(yùn)算中的重要問題,用多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式時(shí),要注意每一項(xiàng)的符號和單項(xiàng)式的符號。

  教學(xué)設(shè)計(jì)示例

  教學(xué)目標(biāo):

  1.理解和掌握多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則。

  2.運(yùn)用多項(xiàng)式除以單項(xiàng)式的法則,熟練、準(zhǔn)確地進(jìn)行計(jì)算.

  3.通過總結(jié)法則,培養(yǎng)學(xué)生的抽象概括能力.訓(xùn)練學(xué)生的綜合解題能力和計(jì)算能力.

  4.培養(yǎng)學(xué)生耐心細(xì)致、嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)思維品質(zhì).

  重點(diǎn)、難點(diǎn):

  1.多項(xiàng)式除以單項(xiàng)式的法則及其應(yīng)用.

  2.理解法則導(dǎo)出的根據(jù)。

  課時(shí)安排:

  一課時(shí).

  教具學(xué)具:

  投影儀、膠片.

  教學(xué)過程:

  1.復(fù)習(xí)導(dǎo)入

  (l)用式子表示乘法分配律.

  (2)單項(xiàng)式除以單項(xiàng)式法則是什么?

  (3)計(jì)算:

  (4)填空:

  規(guī)律:多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以這個(gè)單項(xiàng)式,再把所得的商相加.

  2.講授新課

  例1 計(jì)算:

  (1) (2)

  解:(1)原式

  (2)原式

  注意:(l)多項(xiàng)式除以單項(xiàng)式,商式與被除式的項(xiàng)數(shù)相同,不可丟項(xiàng),如(l)中容易丟掉最后一項(xiàng).

  (2)要求學(xué)生說出式子每步變形的依據(jù).

  (3)讓學(xué)生養(yǎng)成檢驗(yàn)的習(xí)慣,利用乘除逆運(yùn)算,檢驗(yàn)除的對不對.

  例2 化簡:

  解:原式

  說明:注意弄清題中運(yùn)算順序,正確運(yùn)用有關(guān)法則、公式。

  練習(xí):(1)P150 1,2,。

  (2)錯(cuò)例辯析:

  有兩個(gè)錯(cuò)誤:第一,丟項(xiàng),被除式有三項(xiàng),商式只有二項(xiàng),丟了最后一項(xiàng)1;第二項(xiàng)是符號上錯(cuò)誤,商式第一項(xiàng)的符號為“-”,正確答案為 。

  3.小結(jié)

  1.多項(xiàng)式除以單項(xiàng)式的法則是什么?

  2.運(yùn)用該法則應(yīng)注意什么?

  正確地把多項(xiàng)式除以單項(xiàng)式問題轉(zhuǎn)化為單項(xiàng)式除以單項(xiàng)式問題。計(jì)算不可丟項(xiàng),分清“約掉”與“消掉”的區(qū)別:“約掉”對乘除法則言,不減項(xiàng);“消掉”對加減法而言,減項(xiàng)。

  4.作業(yè)

  P152 A組1,2。

  B組1,2。

  初一數(shù)學(xué)教學(xué)教案二

  單項(xiàng)式除以單項(xiàng)式

  教學(xué)建議

  知識結(jié)構(gòu)

  重難點(diǎn)分析

  本節(jié)的重點(diǎn)是單項(xiàng)式除以單項(xiàng)式的法則與應(yīng)用.本章的重點(diǎn)是整式的乘除,作為整式除法內(nèi)容中不可或缺重要組成部分,單項(xiàng)式除以單項(xiàng)式起著承上啟下的作用,它既是同底數(shù)冪除法性質(zhì)的延伸,又是多項(xiàng)式除以單項(xiàng)式的基礎(chǔ)和關(guān)鍵,因此本節(jié)的重點(diǎn)是單項(xiàng)式除以單項(xiàng)式的法則與應(yīng)用.

  單項(xiàng)式除以單項(xiàng)式的運(yùn)算是本節(jié)的難點(diǎn).在單項(xiàng)式除以單項(xiàng)式的計(jì)算過程中,既要對兩個(gè)單項(xiàng)式的系數(shù)進(jìn)行運(yùn)算,又要對兩個(gè)單項(xiàng)式中同字母進(jìn)行指數(shù)運(yùn)算,同時(shí)對只在一個(gè)單項(xiàng)式中出現(xiàn)的字母及其指數(shù)加以注意,這對于剛剛接觸整式除法的初一學(xué)生來講,難免會出現(xiàn)照看不全的情況,以至于出現(xiàn)計(jì)算錯(cuò)誤或漏算等問題.

  教法建議

  (1)單項(xiàng)式除以單項(xiàng)式運(yùn)算的實(shí)質(zhì)是把單項(xiàng)式除以單項(xiàng)式的運(yùn)算轉(zhuǎn)化為同底數(shù)冪除法運(yùn)算,因此建議在學(xué)習(xí)本課知識之前對同底數(shù)冪除法運(yùn)算進(jìn)行復(fù)習(xí)鞏固.

  (2)要熟練地進(jìn)行單項(xiàng)式除以單項(xiàng)式的運(yùn)算,必須掌握它的基本運(yùn)算,冪的運(yùn)算性質(zhì)是整式乘除法的基礎(chǔ),只要抓住這關(guān)鍵的一步,才能準(zhǔn)確地進(jìn)行單項(xiàng)式除以單項(xiàng)式的運(yùn)算.

  (3)符號仍是運(yùn)算中的重要問題,用單項(xiàng)式以單項(xiàng)式時(shí),要注意單項(xiàng)式的符號和只在被除式中出現(xiàn)的字母及其指數(shù).

  教學(xué)設(shè)計(jì)示例

  一、教學(xué)目標(biāo)

  1.理解和掌握單項(xiàng)式除以單項(xiàng)式的運(yùn)算法則.

  2.運(yùn)用單項(xiàng)式除以單項(xiàng)式的運(yùn)算法則,熟練、準(zhǔn)確地進(jìn)行計(jì)算.

  3.通過總結(jié)法則,培養(yǎng)學(xué)生的抽象概括能力.

  4.通過法則的應(yīng)用,訓(xùn)練學(xué)生的綜合解題能力和計(jì)算能力.

  二、教法引導(dǎo)

  嘗試指導(dǎo)法、觀察法、練習(xí)法.

  三、重點(diǎn)難點(diǎn)

  重點(diǎn) 準(zhǔn)確、熟練地運(yùn)用法則進(jìn)行計(jì)算.

  難點(diǎn) 根據(jù)乘、除的運(yùn)算關(guān)系得出法則.

  四、課時(shí)安排

  1課時(shí).

  五、教具

  投影儀或電腦、自制膠片.

  六、教學(xué)步驟

  (一)教學(xué)過程

  1.創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入

  前面我們學(xué)習(xí)了同底數(shù)冪的除法,請同學(xué)們回答如下問題,看哪位同學(xué)回答很快而且準(zhǔn)確.

  (l)敘述同底數(shù)冪的除法性質(zhì).

  (2)計(jì)算:(1) (2) (3) (4)

  學(xué)生活動(dòng):學(xué)生回答上述問題.

  ( ,m,n都是正整數(shù),且m>n)

  【教法說明】通過復(fù)習(xí)引起學(xué)生回憶,且鞏固同底數(shù)冪的除法性質(zhì).同時(shí)為本節(jié)的學(xué)習(xí)打下基礎(chǔ),注意要指出零指數(shù)冪的意義.

  2.指出問題,引出新知

  思考問題:( ) (學(xué)生回答結(jié)果)

  這個(gè)問題就是讓我們?nèi)デ笠粋€(gè)單項(xiàng)式,使它與 相乘,積為 ,這個(gè)過程能列出一個(gè)算式嗎?

  由一個(gè)學(xué)生回答,教師板書.

  這就是我們這節(jié)課要學(xué)習(xí)的單項(xiàng)式除以單項(xiàng)式運(yùn)算.

  師生活動(dòng):因?yàn)?/p>

  所以 (在上述板書過程中填上所缺的項(xiàng))

  由 得到 ,系數(shù)4和3同底數(shù)冪 、a及 、 分別是怎樣計(jì)算的?(一個(gè)學(xué)生回答)那么由 得到 又是怎樣計(jì)算的呢?

  結(jié)合引例,教師引導(dǎo)學(xué)生回答,并對學(xué)生的回答進(jìn)行肯定、否定、糾正,同時(shí)板書.

  一般地,單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式.

  如何運(yùn)用呢?比如計(jì)算:

  學(xué)生活動(dòng):在教師引導(dǎo)下,根據(jù)法則回答問題.(教師板書)

  【教法說明】教師根據(jù)乘、除法的運(yùn)算關(guān)系,步步深入,引導(dǎo)學(xué)生總結(jié)得出單項(xiàng)式除以單項(xiàng)式的運(yùn)算法則,教師給出 ,緊扣計(jì)算法則,在師生互動(dòng)活動(dòng)中,要充分發(fā)揮教師的主導(dǎo)作用和學(xué)生的主體作用,調(diào)動(dòng)學(xué)生的思維.

  3.嘗試計(jì)算,熟悉法則

  學(xué)生活動(dòng):學(xué)生自己嘗試完成計(jì)算題,同桌互相幫助,然后與課本146頁例題解答過程相對照,看自己的解答有無問題,若有問題進(jìn)行改正.

  初一數(shù)學(xué)教學(xué)教案三

  完全平方公式

  教學(xué)建議

  一、知識結(jié)構(gòu)

  二、重點(diǎn)、難點(diǎn)分析

  本節(jié)教學(xué)的重點(diǎn)是完全平方公式的熟記及應(yīng)用.難點(diǎn)是對公式特征的理解(如對公式中積的一次項(xiàng)系數(shù)的理解).完全平方公式是進(jìn)行代數(shù)運(yùn)算與變形的重要的知識基礎(chǔ)。

  1.兩數(shù)和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍.即:

  這兩個(gè)公式是根據(jù)乘方的意義與多項(xiàng)式的乘法法則得到的.

  這兩個(gè)公式的結(jié)構(gòu)特征是:左邊是兩個(gè)相同的二項(xiàng)式相乘,右邊是三項(xiàng)式,是左邊二中兩項(xiàng)的平方和,加上(這兩項(xiàng)相加時(shí))或減去(這兩項(xiàng)相減時(shí))這兩項(xiàng)乘積的2倍;公式中的字母可以表示具體的數(shù)(正數(shù)或負(fù)數(shù)),也可以表示單項(xiàng)式或多項(xiàng)式等代數(shù)式.

  2.只要符合這一公式的結(jié)構(gòu)特征,就可以運(yùn)用這一公式.

  在運(yùn)用公式時(shí),有時(shí)需要進(jìn)行適當(dāng)?shù)淖冃?,例?可先變形為 或 或者 ,再進(jìn)行計(jì)算.

  在運(yùn)用公式時(shí),防止發(fā)生 這樣錯(cuò)誤.

  3.運(yùn)用完全平方公式計(jì)算時(shí),要注意:

  (1)切勿把此公式與公式 混淆,而隨意寫成 .

  (2)切勿把“乘積項(xiàng)” 中的2丟掉.

  (3)計(jì)算時(shí),要先觀察題目特點(diǎn)是否符合公式的條件,若不符合,應(yīng)先變形為符合公式的條件的形式,再利用公式進(jìn)行計(jì)算,若不能變?yōu)榉瞎綏l件的形式,則應(yīng)運(yùn)用乘法法則進(jìn)行計(jì)算.

  4. 與 都叫做完全平方公式.為了區(qū)別,我們把前者叫做兩數(shù)和的完全平方公式,后者叫做兩數(shù)差的完全平方公式.

  三、教法建議

  1.在公式的運(yùn)用上,與平方差公式的運(yùn)用一樣,應(yīng)著重讓學(xué)生掌握公式的結(jié)構(gòu)特征和字母表示數(shù)的廣泛意義,教科書把公式中的字母同具體題目中的數(shù)或式子,用“ ”連結(jié)起來,逐項(xiàng)比較、對照,步驟寫得完整,便于學(xué)生理解如何正確地使用完全平方公式進(jìn)行計(jì)算.

  2.正確地使用公式的關(guān)鍵是確定是否符合使用公式的條件.重要的是確定兩數(shù),然后再看是否兩數(shù)的和(或差),最后按照公式寫出兩數(shù)和(或差)的平方的結(jié)果.

  3.如何使學(xué)生記牢公式呢?我們注意了以下兩點(diǎn).

  (1)既講“法”,又講“理”

  在教學(xué)中要講法則、公式的應(yīng)用,也要講公式的推導(dǎo),使學(xué)生在理解公式、法則道理的基礎(chǔ)上進(jìn)行記憶.我們引導(dǎo)學(xué)生借助面積圖形對完全平方公式做直觀說明,也是對說理的重視.在“明白道理”這個(gè)前提下的記憶,即使學(xué)生將來發(fā)生錯(cuò)誤也易于糾正.

  (2)講聯(lián)系、講對比、講特點(diǎn)

  對于類似的內(nèi)容學(xué)生容易混淆,比如在本節(jié)出現(xiàn)的(a+b)2=a2+b2的錯(cuò)誤,其原因是把完全平方公式和“舊”知識(ab)2=a2b2及分配律弄混,排除新舊知識間相互干擾的一種作法是向?qū)W生指明新知識的特點(diǎn).所以講“理”是要講聯(lián)系、講對比、講特點(diǎn).

  教學(xué)設(shè)計(jì)示例

  一、教學(xué)目標(biāo)

  1.理解完全平方公式的意義,準(zhǔn)確掌握兩個(gè)公式的結(jié)構(gòu)特征.

  2.熟練運(yùn)用公式進(jìn)行計(jì)算.

  3.通過推導(dǎo)公式訓(xùn)練學(xué)生發(fā)現(xiàn)問題、探索規(guī)律的能力.

  4.培養(yǎng)學(xué)生用數(shù)形結(jié)合的方法解決問題的數(shù)學(xué)思想.

  5.滲透數(shù)學(xué)公式的結(jié)構(gòu)美、和諧美.

  二、學(xué)法引導(dǎo)

  1.教學(xué)方法:嘗試指導(dǎo)法、講練結(jié)合法.

  2.學(xué)生學(xué)法:本節(jié)學(xué)習(xí)了乘法公式中的完全平方,一個(gè)是兩數(shù)和的平方,另一個(gè)是兩數(shù)差的平方,兩者僅一個(gè)“符號”不同.相乘的結(jié)果是兩數(shù)的平方和,加上(或減去)兩數(shù)的積的2倍,兩者也僅差一個(gè)“符號”不同,運(yùn)用完全平方公式計(jì)算時(shí),要注意:

  (1)切勿把此公式與公式 混淆,而隨意寫成 .

  (2)切勿把“乘積項(xiàng)”2ab中的2丟掉.

  (3)計(jì)算時(shí),要先觀察題目是否符合公式的條件.若不符合,應(yīng)先變形為符合公式的條件的形式,再利用公式進(jìn)行計(jì)算;若不能變?yōu)榉蠗l件的形式,則應(yīng)運(yùn)用乘法法則進(jìn)行計(jì)算.

  三、重點(diǎn)·難點(diǎn)及解決辦法

3693503