初中數(shù)學圓的復習教案有哪些
圓也是常見的幾何圖形之一,不僅日常生活中的許多物體是圓形的,在其它工農商方面也可以見到圓的影子。下面是學習啦小編分享給大家的初中數(shù)學圓的復習教案的資料,希望大家喜歡!
初中數(shù)學圓的復習教案一
一、教科書內容和課程學習目標
(一)本章知識結構框圖
本章知識結構如下圖所示:
(二)教科書內容
本章是在學習了直線圖形的有關性質的基礎上,來研究一種特殊的曲線圖形──圓的有關性質。圓也是常見的幾何圖形之一,不僅日常生活中的許多物體是圓形的,而且在工農業(yè)生產、交通運輸、土木建筑等方面都可以看到圓。圓的有關性質,也被廣泛的應用。圓也是平面幾何中最基本的圖形之一,它不僅在幾何中有重要地位,而且是進一步學習數(shù)學以及其他科學的重要的基礎。圓的許多性質,比較集中地反映了事物內部量變與質變的關系、一般與特殊的關系、矛盾的對立統(tǒng)一關系等等。結合圓的有關知識,可以對學生進行辯證唯物主義世界觀的教育。所以這一章的教學,在初中的學習中也占有重要地位。
本章是在小學學過的一些圓的知識的基礎上,系統(tǒng)的研究圓的概念、性質、圓中有關的角、點與圓、直線與圓、圓與圓、圓與正多邊形之間的位置、數(shù)量關系。本章共分為四個小節(jié),第1小節(jié)是“圓”,主要是圓的有關概念和性質,圓的概念和性質是進一步研究圓與其他圖形位置、數(shù)量關系的主要依據(jù),是全章的基礎。這一節(jié)包括“圓”“垂直于弦的直徑”“弧、弦、圓心角”“圓周角”四個部分。“24.1.1 圓”的主要內容是圓的定義和圓中的一些相關概念。圓的定義是研究圓的有關性質的基礎。在小學,學生接觸過圓,對它有一定的認識。教科書首先結合生活中一些圓的實際例子,在學生小學學過的畫圓的基礎上,通過設置一個觀察欄目,用“發(fā)生法”給出了圓的定義。進一步的教科書又分析了圓上每一個點與圓心的距離都等于定長,同時到定點的距離等于定長的點都在圓上,這樣實際上從點和集合的角度進一步認識圓,這樣再認識之后,學生對圓的認識就加深了。接下來,是與圓有關的一些概念,如半徑、直徑、弦、弧等,對于這些概念要讓學生結合圖形進行認識,并多進行比較,以搞清他們的異同。
在接下來的幾部分,教科書探究并證明了垂徑定理、弧、弦、圓心角的關系定理、圓周角定理。垂徑定理及其推論反映了圓的重要性質,是圓的軸對稱性的具體化,也是證明線段相等、角相等、垂直關系的重要依據(jù),同時也為進行圓的計算和作圖提供了方法和依據(jù);圓周角定理及其推論對于角的計算、證明角相等、弧、弦相等等問題提供了十分簡便的方法。所以垂徑定理及其推論、圓周角定理及其推論是本小節(jié)的重點,也是本章的重點內容。而垂徑定理及其推論的條件和結論比較復雜,容易混淆,圓周角定理的證明要用到完全歸納法,學生對與分類證明的必要性不易理解,所以這兩部分內容也是本節(jié)的難點。
“24.2 與圓有關的位置關系”包括三部分內容,點與圓的位置關系、直線與圓的位置關系、圓與圓的位置關系。在“點與圓的位置關系”中,教科書首先結合射擊問題,給出了點與圓的三種不同位置關系,接下來討論了過三點的圓,并結合“過同一直線上的三點不能作圓”介紹了反證法。在“直線與圓的位置關系”中,教科書首先討論了直線與圓的三種位置關系,然后重點研究了直線與圓相切的情況,給出了直線與圓相切的判定定理、性質定理、切線長定理,在此基礎上介紹了三角形的內切圓。在“圓與圓的位置關系”中,重點是討論圓與圓的不同位置關系。本小節(jié)中,直線與圓的位置關系是中心內容,切線的判定定理、性質定理、切線長定理等則是研究直線與圓的有關問題時常用的定理,是本節(jié)的重點內容。反證法的思想在前面章節(jié)有所滲透,在這一小節(jié)正式提出,它是一種間接證法,學生接受還是有一定的困難,所以對于反證法的教學是本節(jié)的一個難點;另外切線的判定定理和性質定理的題設和結論容易混淆,證明性質定理又要用到反證法,因此這兩個定理的教學也是本節(jié)的難點,這些也同時是本章的難點。
正多邊形是一種特殊的多邊形,它有一些類似于圓的性質。例如,圓有獨特的對稱性,它不僅是軸對稱圖形、中心對稱圖形,而且它的任意一條直徑所在直線都是它的對稱軸,繞圓心旋轉任意一個角度都能和原來的圖形重合。正多邊形也是軸對稱圖形,正n邊形就有n條對稱軸,當n為偶數(shù)時,它也是中心對稱圖形,而且繞中心每旋轉,都能和原來的圖形重合,可見正多邊形和圓有很多內在的聯(lián)系。另外,正多邊形也在生產和生活中有著廣泛的應用,所以教科書接下來安排了“正多邊形和圓”的內容。教科書回顧學生已經了解的正多邊形概念的基礎上,以正五邊形為例,證明了利用等分圓周得到正五邊形的方法,接下來介紹了正多邊形的有關概念,如中心、半徑、中心角、邊心距等,并進一步介紹了畫正多邊形的方法。正多邊形的有關計算是本節(jié)的重點內容,這些計算都是幾何中的基礎知識,正確掌握它們也要綜合運用以前所學的知識,這些知識在生產和生活中也常要用到。本節(jié)的教學難點在學生對正n邊形中“n”的接受和理解上。學生對三角形、四邊形、圓等這些具體圖形比較習慣,對于泛指的n邊形不習慣。為了降低難度,教科書涉及的證明、計算等問題都是結合具體的多邊形為例的,教學時要注意把這種針對具體圖形的結論和方法推廣,使學生實現(xiàn)由具體到抽象,特殊到一般的認識上的飛躍,提高學生的思維能力。
教科書接下來的24.4節(jié)的主要內容是一些與圓有關的計算,包括兩部分“弧長和扇形的面積”“圓錐的側面積和全面積”。“弧長和扇形的面積”是在小學學過的圓周長、面積公式的基礎上推導出來的,應用這些公式,就可以計算一些與圓有關的簡單組合圖形的周長和面積。由于圓錐的側面展開圖是扇形,所以教科書接下來介紹了圓錐的側面積和全面積的計算。這些計算不僅是幾何中基本的計算,也是日常生活中經常要用到的,運用這些知識也可以解決一些簡單的實際問題。圓錐的側面積的計算還可以培養(yǎng)學生的空間觀念,因此對這部分內容的教學也要重視。
(三)課程學習目標
1.理解圓及其有關概念,理解弧、弦、圓心角的關系,探索并了解點與圓、直線與圓、圓與圓的位置關系,探索并掌握圓周角與圓心角的關系、直徑所對的圓周角的特征。
2.了解切線的概念,探索并掌握切線與過切點的半徑之間的位置關系,能判定一條直線是否為圓的切線,會過圓上一點畫圓的切線。
3.了解三角形的內心和外心,探索如何過一點、兩點和不在同一直線上的三點作圓。
4.了解正多邊形的概念,掌握用等分圓周畫圓的內接正多邊形的方法;會計算弧長及扇形的面積、圓錐的側面積及全面積。
5.結合相關圖形性質的探索和證明,進一步培養(yǎng)學生的合情推理能力,發(fā)展學生的邏輯思維能力和推理論證的表達能力;通過這一章的教學,進一步培養(yǎng)學生綜合運用知識的能力,運用學過的知識解決問題的能力,同時對學生進行辯證唯物主義世界觀的教育。
二、本章編寫特點
(一)突出圖形性質的探索過程,重視直觀操作和邏輯推理的有機結合
圓是日常生活中常見的圖形之一,也是平面幾何中的基本圖形,本章重點研究了與圓有關的一些性質。教科書在編寫時,注意突出圖形性質的探索過程,重視直觀操作和邏輯推理的有機結合,通過多種手段,如觀察度量、實驗操作、圖形變換、邏輯推理等來探索圖形的性質。
例如結合圓的軸對稱性,發(fā)現(xiàn)垂徑定理及其推論;利用圓的旋轉對稱性,發(fā)現(xiàn)圓中弧、弦、圓心角之間的關系;通過觀察、度量,發(fā)現(xiàn)圓心角與圓周角、圓周角之間的數(shù)量關系;利用直觀操作,發(fā)現(xiàn)點與圓、直線與圓、圓與圓之間的位置關系等等。在學生通過觀察、操作、變換探究出圖形的性質后,還要求學生能對發(fā)現(xiàn)的性質進行證明,使直觀操作和邏輯推理有機的整合在一起,使推理論證成為學生觀察、實驗、探究得出結論的自然延續(xù)。
(二)注意聯(lián)系實際
圓是人們日常生活和生產中應用較廣的一種幾何圖形,不僅日常生活中許多物體是圓形的,而且在工農業(yè)生產、交通運輸、土木建筑等方面都可以見到圓。這部分內容與實際聯(lián)系比較緊密。在教科書編寫時,也充分注意到這一點。例如,在引入圓、正多邊形等概念時,舉出了大量的實際生活中的例子;在介紹點與圓、直線與圓、圓與圓的位置關系時,也是注意從它們在實際生活中的應用引入;利用垂徑定理解決求趙州橋的主橋拱半徑的問題;根據(jù)海洋館中人們視野的關系引出研究圓周角與圓心角、圓周角之間的關系;利用正多邊形的有關計算求亭子的地基;實際問題中有關弧長、扇形的面積、圓錐的側面積和全面積的計算問題等等。教科書的例、習題中也有一些實際應用的例子等等。這些材料都是從實際中提煉出來的,要通過這些知識的教學,幫助學生從實際生活中發(fā)現(xiàn)數(shù)學問題、運用所學知識解決實際問題。教學時,還可以根據(jù)本地區(qū)的實際,選擇一些實際問題,引導學生加以解決,提高他們應用知識解決問題的能力。
(三)重視滲透數(shù)學思想方法
教學中不僅要教知識,更重要的是教方法,本章重涉及的數(shù)學思想方法也比較多。例如,圓周角定理證明中的通過分類討論,把一般問題轉化為特殊情況來證明;研究點與圓、直線與圓、圓與圓的位置關系時的分類的思想;研究正多邊形的有關問題是通過把問題轉化為解直角三角形來解決的;正多邊形的畫圖是通過等分圓來完成的;等等。通過這些知識的教學,使學生學會化未知為已知、化復雜為簡單、化一般為特殊或化特殊為一般的思考方法,提高學生分析問題和解決問題的能力。
另外,在本章,通過理論聯(lián)系實際,對學生進行唯物論認識論的教育;通過圓的許多性質之間的內在聯(lián)系,圓與其他圖形之間量變與質變的關系,一般與特殊之間的關系等,對學生進行辯證唯物主義觀點的教育;使學生增強民族的自豪感和振興中華的使命感,對他們進行學習目的的教育,培養(yǎng)他們良好的個性品質。
三、幾個值得關注的問題
(一)進一步培養(yǎng)推理論證能力
從培養(yǎng)學生的邏輯思維能力來說,“圓”這一階段處于學生初步掌握了推理論證方法的基礎上進一步鞏固和提高的階段,不僅要求學生能熟練地用綜合法證明命題,熟悉探索法的推理過程,而且要求了解反證法。教學中要重視推理論證的教學,進一步提高學生的思維能力。教科書在這方面也還是很重視的。在推理與證明的要求方面,除了要求學生對經過觀察、實驗、探究得出的結論進行證明以外,有一些圖形的性質是直接由已有的結論經過推理論證得出的。另外,為了鞏固并提高學生的推理論證能力,本章的定理證明中,除了采用了規(guī)范的證明方法外,還有一些采用了探索式的證明方法。這種方法不是先有了定理再去證明它,而是根據(jù)題設和已有知識,經過推理,得出結論。這些對激發(fā)學生的學習興趣,活躍學生的思維,對發(fā)展學生的思維能力有好處。教學中要注意啟發(fā)和引導,使學生在熟悉“規(guī)范證明”的基礎上,推理論證能力有所提高和發(fā)展。
初中圓的知識點歸納
一、圓的定義。
1、以定點為圓心,定長為半徑的點組成的圖形。
2、在同一平面內,到一個定點的距離都相等的點組成的圖形。
二、圓的各元素。
1、半徑:圓上一點與圓心的連線段。
2、直徑:連接圓上兩點有經過圓心的線段。
3、弦:連接圓上兩點線段(直徑也是弦)。
4、?。簣A上兩點之間的曲線部分。半圓周也是弧。
(1)劣?。盒∮诎雸A周的弧。
(2)優(yōu)?。捍笥诎雸A周的弧。
5、圓心角:以圓心為頂點,半徑為角的邊。
6、圓周角:頂點在圓周上,圓周角的兩邊是弦。
7、弦心距:圓心到弦的垂線段的長。
三、圓的基本性質。
1、圓的對稱性。
(1)圓是軸對稱圖形,它的對稱軸是直徑所在的直線。
(2)圓是中心對稱圖形,它的對稱中心是圓心。
(3)圓是旋轉對稱圖形。
2、垂徑定理。
(1)垂直于弦的直徑平分這條弦,且平分這條弦所對的兩條弧。
(2)推論:
平分弦(非直徑)的直徑,垂直于弦且平分弦所對的兩條弧。
平分弧的直徑,垂直平分弧所對的弦。
3、圓心角的度數(shù)等于它所對弧的度數(shù)。圓周角的度數(shù)等于它所對弧度數(shù)的一半。
(1)同弧所對的圓周角相等。
(2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。
4、在同圓或等圓中,兩條弦、兩條弧、兩個圓周角、兩個圓心角、兩條弦心距五對量中只要有一對量相等,其余四對量也分別相等。
5、夾在平行線間的兩條弧相等。
6、設⊙O的半徑為r,OP=d。
7、(1)過兩點的圓的圓心一定在兩點間連線段的中垂線上。
(2)不在同一直線上的三點確定一個圓,圓心是三邊中垂線的交點,它到三個點的距離相等。
(直角三角形的外心就是斜邊的中點。)
8、直線與圓的位置關系。d表示圓心到直線的距離,r表示圓的半徑。
直線與圓有兩個交點,直線與圓相交;直線與圓只有一個交點,直線與圓相切;
直線與圓沒有交點,直線與圓相離。
9、平面直角坐標系中,A(x1,y1)、B(x2,y2)。
則AB=
10、圓的切線判定。
(1)d=r時,直線是圓的切線。
切點不明確:畫垂直,證半徑。
(2)經過半徑的外端且與半徑垂直的直線是圓的切線。
切點明確:連半徑,證垂直。
11、圓的切線的性質(補充)。
(1)經過切點的直徑一定垂直于切線。
(2)經過切點并且垂直于這條切線的直線一定經過圓心。
12、切線長定理。
(1)切線長:從圓外一點引圓的兩條切線,切點與這點之間連線段的長叫這個點到圓的切線長。
(2)切線長定理。
∵ PA、PB切⊙O于點 A、B
∴ PA=PB,∠1=∠2。
13、內切圓及有關計算。
(1)三角形內切圓的圓心是三個內角平分線的交點,它到三邊的距離相等。
(2)如圖,△ABC中,AB=5,BC=6,AC=7,⊙O切△ABC三邊于點D、E、F。
求:AD、BE、CF的長。
分析:設AD=x,則AD=AF=x,BD=BE=5-x,CE=CF=7-x.
可得方程:5-x+7-x=6,解得x=3
(3)△ABC中,∠C=90°,AC=b,BC=a,AB=c。
求內切圓的半徑r。
分析:先證得正方形ODCE,
得CD=CE=r
AD=AF=b-r,BE=BF=a-r
b-r+a-r=c
得r=
(4)S△ABC=
14、(補充)
(1)弦切角:角的頂點在圓周上,角的一邊是圓的切線,另一邊是圓的弦。
如圖,BC切⊙O于點B,AB為弦,∠ABC叫弦切角,∠ABC=∠D。
(2)相交弦定理。
圓的兩條弦AB與CD相交于點P,則PA•PB=PC•PD。
(3)切割線定理。
如圖,PA切⊙O于點A,PBC是⊙O的割線,則PA2=PB•PC。
(4)推論:如圖,PAB、PCD是⊙O的割線,則PA•PB=PC•PD。
15、圓與圓的位置關系。
(1)外離:d>r1+r2, 交點有0個;
外切:d=r1+r2, 交點有1個;
相交:r1-r2
內切:d=r1-r2, 交點有1個;
內含:0≤d
(2)性質。
相交兩圓的連心線垂直平分公共弦。
相切兩圓的連心線必經過切點。
16、圓中有關量的計算。
(1)弧長有L表示,圓心角用n表示,圓的半徑用R表示。
L=
(2)扇形的面積用S表示。
S= S=
(3)圓錐的側面展開圖是扇形。
r為底面圓的半徑,a為母線長。
扇形的圓心角α=
S側= ar S全= ar+ r2
猜你喜歡: