五年級上學(xué)期數(shù)學(xué)復(fù)習(xí)計劃怎么寫(2)
五年級上學(xué)期數(shù)學(xué)復(fù)習(xí)計劃怎么寫
根據(jù)地毯上所給圖案探求不規(guī)則圖案面積的計算方法。
直接通過數(shù)方格的方法,得出答案的面積。
將圖案進行“化整為零”式的計算,即根據(jù)圖案的特點,將整體的圖案分割為若干個相同面積的小圖案,通過求小圖案的面積,得出整個圖案的面積。
采用“大面積減小面積”的方法,即通過計算相關(guān)圖形的面積,得到所求的面積。
補充知識點:
在解決問題時,策略和方法是多種多樣的。
動手做
認識平行四邊形、三角形與梯形的底和高。
從平行四邊形一邊的某一點到對邊畫垂直線段,這條垂直線段就是平行四邊形的高,這條對邊是平行四邊形的底。
三角形的一個頂點到對邊的垂直線段是三角形的高,這條對邊是三角形的底。
從梯形的兩條平行線中的一條上的某一點到對邊畫垂直線段,這條垂直線段就是梯形的高,這條對邊就是梯形的底。
高和底的關(guān)系是對應(yīng)的。
用三角板畫出平行四邊形的高的方法:
把三角板的一條直角邊與平行四邊形的一條邊重合,讓三角板的另一條直角邊過對邊的某一點。
從這一點沿著三角板的另一條直角邊向它的對邊畫垂線,這條垂線(從點到垂足)就是平行四邊形一條邊上的高。
注意:從一條邊上的任意一點可以向它的對邊畫高,也可以從另一條邊上的任意一點向它的對邊畫高。
用三角板畫出三角形的高的方法:
把三角板的一條直角邊對準三角形的一個頂點,另一條直角邊與這個頂點的對邊重合。
從這個頂點沿著三角板的另一條直角邊向它的對邊畫垂線,這條垂線(從頂點到垂足)就是三角形形一條邊上的高。
用三角板畫梯形的高的方法:
用同樣的方法,畫出梯形兩條平行線之間的垂直線段,就是梯形的高。
平行四邊形的面積
平行四邊形的面積=拼成的長方形的面積
長方形的長就是平行四邊形的底;長方形的寬就是平行四邊形的高。
因此:平行四邊形面積=底×高
如果用S表示平行四邊形的面積,用a和h分別表示平行四邊形的底和高,那么,平行四邊形的面積公式可以寫成:
S=ah
運用平行四邊形的面積計算公式計算相關(guān)圖形的面積并解決一些實際問題。
補充知識點:
當(dāng)平行四邊形的底和高相同時,其面積也是相同的。
三角形的面積
三角形面積=兩個相同三角形拼成的平行四邊形的面積÷2
三角形的底和高,也就是平行四邊形的底和高。
因此:
三角形面積
=平行四邊形的面積÷2
=底×高÷2
如果用S表示三角形的面積,用a和h分別表示三角形的底和高,那么,三角形的面積公式可以寫成:
S=ah÷2
運用三角形的面積公式,計算相關(guān)圖形的面積,解決實際問題。
補充知識點:
決定三角形面積的大小的因素不是圖形的形狀,而是三角形的底與高的長度,只要底和高相同,不同形狀的三角形的面積也是相同的。
梯形的面積
梯形面積=兩個相同梯形拼成的平行四邊形的面積÷2
梯形的上底與下底的和就是平行四邊形的底,梯形的高就是平行四邊形的高。
因此:
梯形面積
=平行四邊形面積÷2
=底×高÷2
=(上底+下底)×高÷2
如果用S表示梯形的面積,用a和b分別表示梯形的上底和下底,用h表示梯形的高,那么,梯形的面積公式可以寫成:
S=(a+b)h÷2
運用梯形面積的計算公式,解決相應(yīng)的實際問題。
補充知識點:
決定梯形面積的大小的因素不是圖形的形狀,而是梯形的上、下底之和與高的長度,只要上下底的和與高相同,不同形狀的梯形的面積也是相同的。
第五單元 分數(shù)的意義
分數(shù)的再認識
在具體情境中,進一步認識分數(shù)。分數(shù)對應(yīng)的“整體”不同,分數(shù)所表示的部分的大小或具體數(shù)量也不一樣,也就是分數(shù)具有相對性。
真分數(shù)與假分數(shù)
理解真分數(shù)、假分數(shù)、帶分數(shù)的意義。
像1/2、1/4、2/3、3/4,…這樣的分數(shù)叫作真分數(shù)。特點:分子都比分母小;分數(shù)值小于1。
像 3/2、3/3、5/4、9/4,…這樣的分數(shù)叫作假分數(shù)。特點:分子比分母大,或者分子與分母相等;分數(shù)值大于或等于1。
像 ,這樣的分數(shù)叫作帶分數(shù)。特點:由整數(shù)和真分數(shù)兩部分組成的;分數(shù)值大于1。
帶分數(shù)的讀法:讀作:二又四分之一。
★補充知識點:
分子是分母倍數(shù)的假分數(shù)可以化成整數(shù)。
分子不是分母倍數(shù)的假分數(shù)可以化成帶分數(shù)。
分數(shù)與除法
理解分數(shù)與除法的關(guān)系:被除數(shù)÷除數(shù)=(除數(shù)不為0)。
分數(shù)的分母不能是0。因為在除法中,0不能做除數(shù),因此根據(jù)分數(shù)與除法的關(guān)系,分數(shù)中的分母相當(dāng)于除法中的除數(shù),所以分母也不能是0。
運用分數(shù)與除法的關(guān)系解決實際問題。用分數(shù)來表示兩數(shù)相除的商。
根據(jù)分數(shù)與除法的關(guān)系把假分數(shù)化成帶分數(shù)的方法:
用分子除以分母,把所得的商寫在帶分數(shù)的整數(shù)位置上,余數(shù)寫在分數(shù)部分的分子上,仍用原來的分母作分母。
把帶分數(shù)化成假分數(shù)的方法:
將整數(shù)與分母相乘的積加上原來的分子作分子,分母不變。
分數(shù)基本性質(zhì)
理解分數(shù)的基本性質(zhì):
分數(shù)的分子和分母都乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。
聯(lián)系分數(shù)與除法的關(guān)系以及“商不變”的規(guī)律,來理解分數(shù)的基本性質(zhì)。
分子相當(dāng)于被除數(shù),分母相當(dāng)于除數(shù),被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(0除外),商不變。因此分數(shù)的分子和分母都乘或除以相同的數(shù)(0除外),分數(shù)的大小也是不變的。
運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。
找最大公因數(shù)
理解公因數(shù)和最大公因數(shù)的意義。
幾個數(shù)公有的因數(shù)是這幾個數(shù)的公因數(shù),其中最大的一個是它們的最大公因數(shù)。
找兩個數(shù)的公因數(shù)和最大公因數(shù)的方法:
1、列舉法:運用找因數(shù)的方法先分別找到兩個數(shù)各自的因數(shù),再找出兩個數(shù)的因數(shù)中相同的因數(shù),這些數(shù)就是兩個數(shù)的公因數(shù);再看看公因數(shù)中最大的是幾,這個數(shù)就是兩個數(shù)的最大公因數(shù)。
補充知識點:
其他找最大公因數(shù)的方法:
2、找兩個數(shù)的公因數(shù)和最大公因數(shù),可以先找出兩個數(shù)中較小的數(shù)的因數(shù),再看看這些因數(shù)中有哪些也是較大的數(shù)的因數(shù),那么這些數(shù)就是這兩個數(shù)的公因數(shù)。其中最大的就是這兩個數(shù)的最大公因數(shù)。
例如:找15和50的公因數(shù)和最大公因數(shù):
可以先找出15的因數(shù):1,3,5,15。再判斷4個數(shù)中,哪幾個也是50的因數(shù),只有1和5,1和5就是15和50的公因數(shù)。5就是它們的最大公因數(shù)。
3、如果兩個數(shù)是不同的質(zhì)數(shù),那么這兩個數(shù)的公因數(shù)只有1。
4、如果兩個數(shù)是連續(xù)的自然數(shù)(0除外),那么這兩個數(shù)的公因數(shù)只有1。
5、如果兩個數(shù)具有倍數(shù)關(guān)系,那么較小的數(shù)就是這兩個數(shù)的最大公因數(shù)。
6、短除法
偶數(shù)與所有奇數(shù)的最大公因數(shù)是1;一個數(shù)與它的的倍數(shù)的最大公因數(shù)是它本身。
約分
理解約分的含義:
把一個分數(shù)的分子、分母同時除以公因數(shù),分數(shù)的值不變,這個過程叫做約分。
理解最簡分數(shù)的含義:
像1/3這樣分子、分母公因數(shù)只有1了,不能再約分了,這樣的分數(shù)是最簡分數(shù)。
掌握約分的方法:
約分的方法一般有兩種,一種是用兩個數(shù)的公因數(shù)一個一個去除,另一種是直接用兩個數(shù)的最大公因數(shù)去除。
補充知識點:
比較分數(shù)大小時,分母相同的、分子相同的可以直接比較,有些時候分子分母都不相同可以采用約分后進行比較的方法。例如:○
找最小公倍數(shù)
理解公倍數(shù)和最小公倍數(shù)的含義。
兩個數(shù)公有的倍數(shù)叫做這兩個數(shù)的公倍數(shù),其中最小的一個,叫做最小公倍數(shù)。
找兩個數(shù)的公倍數(shù)和最小公倍數(shù)的方法:
1、先找出兩個數(shù)各自的倍數(shù)(限制一定的范圍內(nèi)),再找出公有的倍數(shù),找出兩個數(shù)公有的倍數(shù),看看這些公倍數(shù)中最小的是幾,這個數(shù)就是兩個數(shù)的最小公倍數(shù)。
兩個數(shù)公倍數(shù)的個數(shù)是無限的,因此只有最小公倍數(shù)沒有最大的公倍數(shù)。
補充知識點:
其他找公倍數(shù)和最小公倍數(shù)的方法:
2、找兩個數(shù)的公倍數(shù)和最小公倍數(shù),可以先找出兩個數(shù)中較大的數(shù)的倍數(shù)(限制一定的范圍內(nèi)),再看看這些倍數(shù)中有哪些也是較小的數(shù)的倍數(shù),那么這些數(shù)就是這兩個數(shù)的公倍數(shù)。其中最小的就是這兩個數(shù)的最小公倍數(shù)。
例如:找6和9的公倍數(shù)和最小公倍數(shù)。(50以內(nèi))可以先找出9的倍數(shù)(50以內(nèi))有:9,18,27,36,45,再從這些數(shù)中找出6的倍數(shù)18,36,18和36就是6和9的公倍數(shù),18是最小公倍數(shù)。
3、如果兩個數(shù)是不同的質(zhì)數(shù),那么這兩個數(shù)的最小公倍數(shù)是兩個數(shù)的乘積。
4、如果兩個數(shù)是連續(xù)的自然數(shù)(0除外),那么這兩個數(shù)的最小公倍數(shù)是兩個數(shù)的乘積。
5、如果兩個數(shù)具有倍數(shù)關(guān)系,那么較大的數(shù)就是這兩個數(shù)的最小公倍數(shù)。
6、短除法求最小公倍數(shù)
分數(shù)的大小
理解通分的含義:
把分母不相同的分數(shù)化成和原來分數(shù)相等、并且分母相同的分數(shù),這個過程叫作通分。
★通分的兩個要點:和原來分數(shù)相等;分母相同。
■分數(shù)大小比較:
同分母分數(shù)相比較,分子越大分數(shù)越大。
同分子分數(shù)相比較,分母越小分數(shù)越大。
分子分母都不相同的分數(shù)相比較的方法:
用通分的方法把分母不相同的分數(shù)化成和原來分數(shù)相等、并且分母相同的分數(shù),再比較大小。(把兩個分數(shù)化成分子相同的分數(shù),再比較大小)
補充知識點:
通分一般以最小公倍數(shù)作分母。
第六單元 組合圖形的面積
組合圖形面積
了解組合圖形:
有幾個簡單的圖形拼出來的圖形,我們把它們叫做組合圖形。
計算組合圖形的面積的方法是多種多樣的。一般運用的方法是“分割法”和“添補法”。
分割法,即將這個圖形分割成幾個基本的圖形。分割圖形越簡潔,其解題的方法也將越簡單,同時又要考慮分割的圖形與所給條件的關(guān)系。
添補法,即通過補上一個簡單的圖形,使整個圖形變成一個大的規(guī)則圖形。
運用所學(xué)的知識,解決生活中組合圖形的實際問題。
能正確估計不規(guī)則圖形面積的大小。
能用數(shù)格子的方法,計算不規(guī)則圖形的面積。
估計、計算不規(guī)則圖形面積的內(nèi)容主要是以方格圖作為北京進行估計與計算的,所以借助方格圖能幫助建立估計與計算不規(guī)則圖形面積的方法。
雞兔同籠
知識點:借助“雞兔同籠”這個載體經(jīng)歷列表、嘗試和不斷調(diào)整的過程,從中體會出解決問題的一般策略—列表。
點陣中的規(guī)律
知識點:能在觀察活動中,發(fā)現(xiàn)點陣中隱含的規(guī)律,體會到圖形與數(shù)的聯(lián)系。
在“點陣中的規(guī)律”的活動中,通過觀察前后圖形中點的變化規(guī)律,推理出后續(xù)圖形中點的數(shù)量。
第七單元 可能性
摸球游戲(用分數(shù)表示可能性的大小)
知識點:用分數(shù)表示可能性的大小。
客觀事件中,“不可能”出現(xiàn)的現(xiàn)象用數(shù)據(jù)表示為“可能性是0”,客觀事件中,“一定能”出現(xiàn)的現(xiàn)象用數(shù)據(jù)表示為“可能性是1”,當(dāng)可能性是相等的時候,用數(shù)據(jù)表述是“1/2”。
逐步體會到數(shù)據(jù)表示的簡潔性與客觀性。
知識點:運用分數(shù)表示可能性的大小,能自主地設(shè)計一些活動方案。
對實際生活中的事件與現(xiàn)象,能運用可能性的知識進行合理的解釋。
猜你喜歡:
2.五年級上冊數(shù)學(xué)期末復(fù)習(xí)計劃
3.五年級數(shù)學(xué)科復(fù)習(xí)計劃