高中數(shù)學(xué)立體幾何怎么學(xué)好
高中數(shù)學(xué)立體幾何一直是數(shù)學(xué)的一大難點(diǎn)。因?yàn)樗髮W(xué)生有立體感,在一個(gè)平面內(nèi)把幾何圖形的立體感想象出來(lái)。怎樣才能學(xué)好立體幾何呢?下面學(xué)習(xí)啦小編為你整理了高中數(shù)學(xué)立體幾何學(xué)習(xí)方法,希望對(duì)你有幫助。
高中數(shù)學(xué)立體幾何學(xué)習(xí)方法
第一要建立空間觀念,提高空間想象力。
從認(rèn)識(shí)平面圖形到認(rèn)識(shí)立體圖形是一次飛躍,要有一個(gè)過(guò)程。有的同學(xué)自制一些空間幾何模型并反復(fù)觀察,這有益于建立空間觀念,是個(gè)好辦法。有的同學(xué)有空就對(duì)一些立體圖形進(jìn)行觀察、揣摩,并且判斷其中的線線、線面、面面位置關(guān)系,探索各種角、各種垂線作法,這對(duì)于建立空間觀念也是好方法。此外,多用圖表示概念和定理,多在頭腦中“證明”定理和構(gòu)造定理的“圖”,對(duì)于建立空間觀念也是很有幫助的。
2. 2
第二要掌握基礎(chǔ)知識(shí)和基本技能。
要用圖形、文字、符號(hào)三種形式表達(dá)概念、定理、公式,要及時(shí)不斷地復(fù)習(xí)前面學(xué)過(guò)的內(nèi)容。這是因?yàn)椤读Ⅲw幾何》內(nèi)容前后聯(lián)系緊密,前面內(nèi)容是后面內(nèi)容的根據(jù),后面內(nèi)容既鞏固了前面的內(nèi)容,又發(fā)展和推廣了前面內(nèi)容。在解題中,要書寫規(guī)范,如用平行四邊形ABCD表示平面時(shí),可以寫成平面AC,但不可以把平面兩字省略掉;要寫出解題根據(jù),不論對(duì)于計(jì)算題還是證明題都應(yīng)該如此,不能想當(dāng)然或全憑直觀;對(duì)于文字證明題,要寫已知和求證,要畫圖;用定理時(shí),必須把題目滿足定理的條件逐一交待清楚,自己心中有數(shù)而不把它寫出來(lái)是不行的。要學(xué)會(huì)用圖(畫圖、分解圖、變換圖)幫助解決問(wèn)題;要掌握求各種角、距離的基本方法和推理證明的基本方法——分析法、綜合法、反證法。
3. 3
第三要不斷提高各方面能力。
通過(guò)聯(lián)系實(shí)際、觀察模型或類比平面幾何的結(jié)論來(lái)提出命題;對(duì)于提出的命題,不要輕易肯定或否定它,要多用幾個(gè)特例進(jìn)行檢驗(yàn),最好做到否定舉出反面例子,肯定給出證明。歐拉公式的內(nèi)容是以研究性課題的形式給出的,要從中體驗(yàn)創(chuàng)造數(shù)學(xué)知識(shí)。要不斷地將所學(xué)的內(nèi)容結(jié)構(gòu)化、系統(tǒng)化。所謂結(jié)構(gòu)化,是指從整體到局部、從高層到低層來(lái)認(rèn)識(shí)、組織所學(xué)知識(shí),并領(lǐng)會(huì)其中隱含的思想、方法。所謂系統(tǒng)化,是指將同類問(wèn)題如平行的問(wèn)題、垂直的問(wèn)題、角的問(wèn)題、距離的問(wèn)題、惟一性的問(wèn)題集中起來(lái),比較它們的異同,形成對(duì)它們的整體認(rèn)識(shí)。牢固地把握一些能統(tǒng)攝全局、組織整體的概念,用這些概念統(tǒng)攝早先偶爾接觸過(guò)的或是未察覺(jué)出明顯關(guān)系的已知知識(shí)間的聯(lián)系,提高整體觀念。
學(xué)好立體幾何方法
一、逐漸提高邏輯論證能力
立體幾何的證明是數(shù)學(xué)學(xué)科中任一分之也替代不了的。因此,歷年高考中都有立體幾何論證的考察。論證時(shí),首先要保持嚴(yán)密性,對(duì)任何一個(gè)定義、定理及推論的理解要做到準(zhǔn)確無(wú)誤。符號(hào)表示與定理完全一致,定理的所有條件都具備了,才能推出相關(guān)結(jié)論。切忌條件不全就下結(jié)論。其次,在論證問(wèn)題時(shí),思考應(yīng)多用分析法,即逐步地找到結(jié)論成立的充分條件,向已知靠攏,然后用綜合法(“推出法”)形式寫出。
二、立足課本,夯實(shí)基礎(chǔ)
學(xué)習(xí)立體幾何的一個(gè)捷徑就是認(rèn)真學(xué)習(xí)課本中定理的證明,尤其是一些很關(guān)鍵的定理的證明。定理的內(nèi)容都很簡(jiǎn)單,就是線與線,線與面,面與面之間的聯(lián)系的闡述。但定理的證明在初學(xué)的時(shí)候一般都很復(fù)雜,甚至很抽象。深刻掌握定理的內(nèi)容,明確定理的作用是什么,多用在那些地方,怎么用。
三、培養(yǎng)空間想象力
為了培養(yǎng)空間想象力,可以在剛開(kāi)始學(xué)習(xí)時(shí),動(dòng)手制作一些簡(jiǎn)單的模型用以幫助想象。
例如:正方體或長(zhǎng)方體。在正方體中尋找線與線、線與面、面與面之間的關(guān)系。通過(guò)模型中的點(diǎn)、線、面之間的位置關(guān)系的觀察,逐步培養(yǎng)自己對(duì)空間圖形的想象能力和識(shí)別能力。
其次,要培養(yǎng)自己的畫圖能力??梢詮暮?jiǎn)單的圖形(如:直線和平面)、簡(jiǎn)單的幾何體(如:正方體)開(kāi)始畫起。
最后要做的就是樹(shù)立起立體觀念,做到能想象出空間圖形并把它畫在一個(gè)平面(如:紙、黑板)上,還要能根據(jù)畫在平面上的“立體”圖形,想象出原來(lái)空間圖形的真實(shí)形狀??臻g想象力并不是漫無(wú)邊際的胡思亂想,而是以提設(shè)為根據(jù),以幾何體為依托,這樣就會(huì)給空間想象力插上翱翔的翅膀。
四、“轉(zhuǎn)化”思想的應(yīng)用
我個(gè)人覺(jué)得,解立體幾何的問(wèn)題,主要是充分運(yùn)用“轉(zhuǎn)化”這種數(shù)學(xué)思想,要明確在轉(zhuǎn)化過(guò)程中什么變了,什么沒(méi)變,有什么聯(lián)系,這是非常關(guān)鍵的。例如:
(1)兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線的夾角即過(guò)空間任意一點(diǎn)引兩條異面直線的平行線。斜線與平面所成的角轉(zhuǎn)化為直線與直線所成的角即斜線與斜線在該平面內(nèi)的射影所成的角。
(2)異面直線的距離可以轉(zhuǎn)化為直線和與它平行的平面間的距離,也可以轉(zhuǎn)化為兩平行平面的距離,即異面直線的距離與線面距離、面面距離三者可以相互轉(zhuǎn)化。而面面距離可以轉(zhuǎn)化為線面距離,再轉(zhuǎn)化為點(diǎn)面距離,點(diǎn)面距離又可轉(zhuǎn)化為點(diǎn)線距離。
(3)面和面平行可以轉(zhuǎn)化為線面平行,線面平行又可轉(zhuǎn)化為線線平行。而線線平行又可以由線面平行或面面平行得到,它們之間可以相互轉(zhuǎn)化。同樣面面垂直可以轉(zhuǎn)化為線面垂直,進(jìn)而轉(zhuǎn)化為線線垂直。
五、建立數(shù)學(xué)模型
新課程標(biāo)準(zhǔn)中多次提到“數(shù)學(xué)模型”一詞,目的是進(jìn)一步加強(qiáng)數(shù)學(xué)與現(xiàn)實(shí)世界的聯(lián)系。數(shù)學(xué)模型是把實(shí)際問(wèn)題用數(shù)學(xué)語(yǔ)言抽象概括,再?gòu)臄?shù)學(xué)角度來(lái)反映或近似地反映實(shí)際問(wèn)題時(shí),所得出的關(guān)于實(shí)際問(wèn)題的描述。數(shù)學(xué)模型的形式是多樣的,它們可以是幾何圖形,也可以是方程式,函數(shù)解析式等等。實(shí)際問(wèn)題越復(fù)雜,相應(yīng)的數(shù)學(xué)模型也越復(fù)雜。
猜你感興趣: