2020數(shù)學(xué)學(xué)習(xí)計(jì)劃范文模板
數(shù)學(xué)(mathematics或maths,其英文來自希臘語,“máthēma”;經(jīng)常被縮寫為“math”),是研究數(shù)量、結(jié)構(gòu)、變化、空間以及信息等概念的一門學(xué)科,從某種角度看屬于形式科學(xué)的一種。怎樣制定數(shù)學(xué)學(xué)習(xí)計(jì)劃呢?
一、制定切實(shí)可行的復(fù)習(xí)計(jì)劃,并認(rèn)真執(zhí)行計(jì)劃。為使復(fù)習(xí)具有針對(duì)性,目的性和可行性,找準(zhǔn)重點(diǎn)、難點(diǎn),大綱(課程標(biāo)準(zhǔn))是復(fù)習(xí)依據(jù),教材是復(fù)習(xí)的藍(lán)本。復(fù)習(xí)時(shí)要弄清學(xué)習(xí)中的難點(diǎn)、疑點(diǎn)及各知識(shí)點(diǎn)易出錯(cuò)的原因,這樣做到復(fù)習(xí)有針對(duì)性,可收到事半功倍的效果。
二、分類整理、梳理,強(qiáng)化復(fù)習(xí)的系統(tǒng)性。復(fù)習(xí)的重要特點(diǎn)就是在系統(tǒng)原理的指導(dǎo)下,對(duì)所學(xué)知識(shí)進(jìn)行系統(tǒng)的整理,使之形成一個(gè)較完整的知識(shí)體體系,這樣有利于知識(shí)的系統(tǒng)化和對(duì)其內(nèi)在聯(lián)系的把握,便于融合貫通。做到梳理——訓(xùn)練——拓展,有序發(fā)展,真正提高復(fù)習(xí)的效果。
三、辨析比較,區(qū)分弄清易混概念。對(duì)于易混淆的概念,首先抓住意義方面的比較,再者是對(duì)易混概念的分析,這樣能全面把握概念的本質(zhì),避免不同概念的干擾,另外對(duì)易混的方法也應(yīng)進(jìn)行比較,以明確解題方法。
四、一題多解,多題一解,提高解題的靈活性。有些題目,可以從不同的角度去分析,得到不同的解題方法。一題多解可以培養(yǎng)分析問題的能力。靈活解題的能力。不同的解題思路,列式不同,結(jié)果相同,收到殊途同歸的效果。同時(shí)也給其他同學(xué)以啟迪,開闊解題思路。有些應(yīng)用題,雖題目形式不同,但它們的解題方法是一樣的,故在復(fù)習(xí)時(shí),要從不同的角度去思考,要對(duì)各類習(xí)題進(jìn)行歸類,這樣才能使所所學(xué)知識(shí)融會(huì)貫通,提高解題靈活性。
五、有的放矢,挖掘創(chuàng)新。機(jī)械的重復(fù),什么都講,什么都練是復(fù)習(xí)大忌,復(fù)習(xí)一定要有目的,有重點(diǎn),要對(duì)所學(xué)知識(shí)歸納,概括。習(xí)題要具有開放性,創(chuàng)新性,使思維得到充分發(fā)展,要正確評(píng)估自己,自覺補(bǔ)缺查漏,面對(duì)復(fù)雜多變的題目,嚴(yán)密審題,弄清知識(shí)結(jié)構(gòu)關(guān)系和知識(shí)規(guī)律,發(fā)掘隱含條件,多思多找,得出自己的經(jīng)驗(yàn)。