国产成人v爽在线免播放观看,日韩欧美色,久久99国产精品久久99软件,亚洲综合色网站,国产欧美日韩中文久久,色99在线,亚洲伦理一区二区

學(xué)習(xí)啦 > 腦力開發(fā) > 記憶力 > 記憶方法 > 初中數(shù)學(xué)公式記憶口訣

初中數(shù)學(xué)公式記憶口訣

時間: 榮雪1109 分享

初中數(shù)學(xué)公式記憶口訣

  一說到數(shù)學(xué),很多同學(xué)就頭疼,要記各種公式,定理,最后還要學(xué)會運(yùn)用。以下是學(xué)習(xí)啦小編為你帶來的初中數(shù)學(xué)公式記憶口決,希望能幫到你。

  初中數(shù)學(xué)公式記憶口決

  有理數(shù)的加法運(yùn)算

  同號兩數(shù)來相加,絕對值加不變號。

  異號相加大減小,大數(shù)決定和符號。

  互為相反數(shù)求和,結(jié)果是零須記好。

  【注】“大”減“小”是指絕對值的大小。

  有理數(shù)的減法運(yùn)算

  減正等于加負(fù),減負(fù)等于加正。

  有理數(shù)的乘法運(yùn)算符號法則

  同號得正異號負(fù),一項為零積是零。

  合并同類項

  說起合并同類項,法則千萬不能忘。

  只求系數(shù)代數(shù)和,字母指數(shù)留原樣。

  去、添括號法則

  去括號或添括號,關(guān)鍵要看連接號。

  擴(kuò)號前面是正號,去添括號不變號。

  括號前面是負(fù)號,去添括號都變號。

  解方程

  已知未知鬧分離,分離要靠移完成。

  移加變減減變加,移乘變除除變乘。

  平方差公式

  兩數(shù)和乘兩數(shù)差,等于兩數(shù)平方差。

  積化和差變兩項,完全平方不是它。

  完全平方公式

  二數(shù)和或差平方,展開式它共三項。

  首平方與末平方,首末二倍中間放。

  和的平方加聯(lián)結(jié),先減后加差平方。

  完全平方公式

  首平方又末平方,二倍首末在中央。

  和的平方加再加,先減后加差平方。

  解一元一次方程

  先去分母再括號,移項變號要記牢。

  同類各項去合并,系數(shù)化“1”還沒好。

  求得未知須檢驗,回代值等才算了。

  解一元一次方程

  先去分母再括號,移項合并同類項。

  系數(shù)化1還沒好,準(zhǔn)確無誤不白忙。

  因式分解與乘法

  和差化積是乘法,乘法本身是運(yùn)算。

  積化和差是分解,因式分解非運(yùn)算。

  因式分解

  兩式平方符號異,因式分解你別怕。

  兩底和乘兩底差,分解結(jié)果就是它。

  兩式平方符號同,底積2倍坐中央。

  因式分解能與否,符號上面有文章。

  同和異差先平方,還要加上正負(fù)號。

  同正則正負(fù)就負(fù),異則需添冪符號。

  因式分解

  一提二套三分組,十字相乘也上數(shù)。

  四種方法都不行,拆項添項去重組。

  重組無望試求根,換元或者算余數(shù)。

  多種方法靈活選,連乘結(jié)果是基礎(chǔ)。

  同式相乘若出現(xiàn),乘方表示要記住。

  【注】一提(提公因式)二套(套公式)

  因式分解

  一提二套三分組,叉乘求根也上數(shù)。

  五種方法都不行,拆項添項去重組。

  對癥下藥穩(wěn)又準(zhǔn),連乘結(jié)果是基礎(chǔ)。

  二次三項式的因式分解

  先想完全平方式,十字相乘是其次。

  兩種方法行不通,求根分解去嘗試。

  比和比例

  兩數(shù)相除也叫比,兩比相等叫比例。

  外項積等內(nèi)項積,等積可化八比例。

  分別交換內(nèi)外項,統(tǒng)統(tǒng)都要叫更比。

  同時交換內(nèi)外項,便要稱其為反比。

  前后項和比后項,比值不變叫合比。

  前后項差比后項,組成比例是分比。

  兩項和比兩項差,比值相等合分比。

  前項和比后項和,比值不變叫等比。

  解比例

  外項積等內(nèi)項積,列出方程并解之。

  求比值

  由已知去求比值,多種途徑可利用。

  活用比例七性質(zhì),變量替換也走紅。

  消元也是好辦法,殊途同歸會變通。

  正比例與反比例

  商定變量成正比,積定變量成反比。

  正比例與反比例

  變化過程商一定,兩個變量成正比。

  變化過程積一定,兩個變量成反比。

  判斷四數(shù)成比例

  四數(shù)是否成比例,遞增遞減先排序。

  兩端積等中間積,四數(shù)一定成比例。

  判斷四式成比例

  四式是否成比例,生或降冪先排序。

  兩端積等中間積,四式便可成比例。

  比例中項

  成比例的四項中,外項相同會遇到。

  有時內(nèi)項會相同,比例中項少不了。

  比例中項很重要,多種場合會碰到。

  成比例的四項中,外項相同有不少。

  有時內(nèi)項會相同,比例中項出現(xiàn)了。

  同數(shù)平方等異積,比例中項無處逃。

  根式與無理式

  表示方根代數(shù)式,都可稱其為根式。

  根式異于無理式,被開方式無限制。

  被開方式有字母,才能稱為無理式。

  無理式都是根式,區(qū)分它們有標(biāo)志。

  被開方式有字母,又可稱為無理式。

  求定義域

  求定義域有講究,四項原則須留意。

  負(fù)數(shù)不能開平方,分母為零無意義。

  指是分?jǐn)?shù)底正數(shù),數(shù)零沒有零次冪。

  限制條件不唯一,滿足多個不等式。

  求定義域要過關(guān),四項原則須注意。

  負(fù)數(shù)不能開平方,分母為零無意義。

  分?jǐn)?shù)指數(shù)底正數(shù),數(shù)零沒有零次冪。

  限制條件不唯一,不等式組求解集。

  解一元一次不等式

  先去分母再括號,移項合并同類項。

  系數(shù)化“1”有講究,同乘除負(fù)要變向。

  先去分母再括號,移項別忘要變號。

  同類各項去合并,系數(shù)化“1”注意了。

  同乘除正無防礙,同乘除負(fù)也變號。

  解一元一次不等式組

  大于頭來小于尾,大小不一中間找。

  大大小小沒有解,四種情況全來了。

  同向取兩邊,異向取中間。

  中間無元素,無解便出現(xiàn)。

  幼兒園小鬼當(dāng)家,(同小相對取較小)

  敬老院以老為榮,(同大就要取較大)

  軍營里沒老沒少。(大小小大就是它)

  大大小小解集空。(小小大大哪有哇)

  解一元二次不等式

  首先化成一般式,構(gòu)造函數(shù)第二站。

  判別式值若非負(fù),曲線橫軸有交點(diǎn)。

  A正開口它向上,大于零則取兩邊。

  代數(shù)式若小于零,解集交點(diǎn)數(shù)之間。

  方程若無實(shí)數(shù)根,口上大零解為全。

  小于零將沒有解,開口向下正相反。

  用平方差公式因式分解

  異號兩個平方項,因式分解有辦法。

  兩底和乘兩底差,分解結(jié)果就是它。

  用完全平方公式因式分解

  兩平方項在兩端,底積2倍在中部。

  同正兩底和平方,全負(fù)和方相反數(shù)。

  分成兩底差平方,方正倍積要為負(fù)。

  兩邊為負(fù)中間正,底差平方相反數(shù)。

  一平方又一平方,底積2倍在中路。

  三正兩底和平方,全負(fù)和方相反數(shù)。

  分成兩底差平方,兩端為正倍積負(fù)。

  兩邊若負(fù)中間正,底差平方相反數(shù)。

  用公式法解一元二次方程

  要用公式解方程,首先化成一般式。

  調(diào)整系數(shù)隨其后,使其成為最簡比。

  確定參數(shù)abc,計算方程判別式。

  判別式值與零比,有無實(shí)根便得知。

  有實(shí)根可套公式,沒有實(shí)根要告之。

  用常規(guī)配方法解一元二次方程

  左未右已先分離,二系化“1”是其次。

  一系折半再平方,兩邊同加沒問題。

  左邊分解右合并,直接開方去解題。

  該種解法叫配方,解方程時多練習(xí)。

  用間接配方法解一元二次方程

  已知未知先分離,因式分解是其次。

  調(diào)整系數(shù)等互反,和差積套恒等式。

  完全平方等常數(shù),間接配方顯優(yōu)勢。

  【注】恒等式

  解一元二次方程

  方程沒有一次項,直接開方最理想。

  如果缺少常數(shù)項,因式分解沒商量。

  b、c相等都為零,等根是零不要忘。

  b、c同時不為零,因式分解或配方,

  也可直接套公式,因題而異擇良方。

  正比例函數(shù)的鑒別

  判斷正比例函數(shù),檢驗當(dāng)分兩步走。

  一量表示另一量,是與否。

  若有還要看取值,全體實(shí)數(shù)都要有。

  正比例函數(shù)是否,辨別需分兩步走。

  一量表示另一量,有沒有。

  若有再去看取值,全體實(shí)數(shù)都需要。

  區(qū)分正比例函數(shù),衡量可分兩步走。

  一量表示另一量,是與否。

  若有還要看取值,全體實(shí)數(shù)都要有。

  正比例函數(shù)的圖象與性質(zhì)

  正比函數(shù)圖直線,經(jīng)過和原點(diǎn)。

  K正一三負(fù)二四,變化趨勢記心間。

  K正左低右邊高,同大同小向爬山。

  K負(fù)左高右邊低,一大另小下山巒。

  一次函數(shù)

  一次函數(shù)圖直線,經(jīng)過點(diǎn)。

  K正左低右邊高,越走越高向爬山。

  K負(fù)左高右邊低,越來越低很明顯。

  K稱斜率b截距,截距為零變正函。

  反比例函數(shù)

  反比函數(shù)雙曲線,經(jīng)過點(diǎn)。

  K正一三負(fù)二四,兩軸是它漸近線。

  K正左高右邊低,一三象限滑下山。

  K負(fù)左低右邊高,二四象限如爬山。

  二次函數(shù)

  二次方程零換y,二次函數(shù)便出現(xiàn)。

  全體實(shí)數(shù)定義域,圖像叫做拋物線。

  拋物線有對稱軸,兩邊單調(diào)正相反。

  A定開口及大小,線軸交點(diǎn)叫頂點(diǎn)。

  頂點(diǎn)非高即最低。上低下高很顯眼。

  如果要畫拋物線,平移也可去描點(diǎn),

  提取配方定頂點(diǎn),兩條途徑再挑選。

  列表描點(diǎn)后連線,平移規(guī)律記心間。

  左加右減括號內(nèi),號外上加下要減。

  二次方程零換y,就得到二次函數(shù)。

  圖像叫做拋物線,定義域全體實(shí)數(shù)。

  A定開口及大小,開口向上是正數(shù)。

  絕對值大開口小,開口向下A負(fù)數(shù)。

  拋物線有對稱軸,增減特性可看圖。

  線軸交點(diǎn)叫頂點(diǎn),頂點(diǎn)縱標(biāo)最值出。

  如果要畫拋物線,描點(diǎn)平移兩條路。

  提取配方定頂點(diǎn),平移描點(diǎn)皆成圖。

  列表描點(diǎn)后連線,三點(diǎn)大致定全圖。

  若要平移也不難,先畫基礎(chǔ)拋物線,

  頂點(diǎn)移到新位置,開口大小隨基礎(chǔ)。

  【注】基礎(chǔ)拋物線

  直線、射線與線段

  直線射線與線段,形狀相似有關(guān)聯(lián)。

  直線長短不確定,可向兩方無限延。

  射線僅有一端點(diǎn),反向延長成直線。

  線段定長兩端點(diǎn),雙向延伸變直線。

  兩點(diǎn)定線是共性,組成圖形最常見。

  角

  一點(diǎn)出發(fā)兩射線,組成圖形叫做角。

  共線反向是平角,平角之半叫直角。

  平角兩倍成周角,小于直角叫銳角。

  直平之間是鈍角,平周之間叫優(yōu)角。

  互余兩角和直角,和是平角互補(bǔ)角。

  一點(diǎn)出發(fā)兩射線,組成圖形叫做角。

  平角反向且共線,平角之半叫直角。

  平角兩倍成周角,小于直角叫銳角。

  鈍角界于直平間,平周之間叫優(yōu)角。

  和為直角叫互余,互為補(bǔ)角和平角。

  證等積或比例線段

  等積或比例線段,多種途徑可以證。

  證等積要改等比,對照圖形看特征。

  共點(diǎn)共線線相交,平行截比把題證。

  三點(diǎn)定型十分像,想法來把相似證。

  圖形明顯不相似,等線段比替換證。

  換后結(jié)論能成立,原來命題即得證。

  實(shí)在不行用面積,射影角分線也成。

  只要學(xué)習(xí)肯登攀,手腦并用無不勝。

  解無理方程

  一無一有各一邊,兩無也要放兩邊。

  乘方根號無蹤跡,方程可解無負(fù)擔(dān)。

  兩無一有相對難,兩次乘方也好辦。

  特殊情況去換元,得解驗根是必然。

  解分式方程

  先約后乘公分母,整式方程轉(zhuǎn)化出。

  特殊情況可換元,去掉分母是出路。

  求得解后要驗根,原留增舍別含糊。

  列方程解應(yīng)用題

  列方程解應(yīng)用題,審設(shè)列解雙檢答。

  審題弄清已未知,設(shè)元直間兩辦法。

  列表畫圖造方程,解方程時守章法。

  檢驗準(zhǔn)且合題意,問求同一才作答。

  添加輔助線

  學(xué)習(xí)幾何體會深,成敗也許一線牽。

  分散條件要集中,常要添加輔助線。

  畏懼心理不要有,其次要把觀念變。

  熟能生巧有規(guī)律,真知灼見靠實(shí)踐。

  圖中已知有中線,倍長中線把線連。

  旋轉(zhuǎn)構(gòu)造全等形,等線段角可代換。

  多條中線連中點(diǎn),便可得到中位線。

  倘若知角平分線,既可兩邊作垂線。

  也可沿線去翻折,全等圖形立呈現(xiàn)。

  角分線若加垂線,等腰三角形可見。

  角分線加平行線,等線段角位置變。

  已知線段中垂線,連接兩端等線段。

  輔助線必畫虛線,便與原圖聯(lián)系看。

  兩點(diǎn)間距離公式

  同軸兩點(diǎn)求距離,大減小數(shù)就為之。

  與軸等距兩個點(diǎn),間距求法亦如此。

  平面任意兩個點(diǎn),橫縱標(biāo)差先求值。

  差方相加開平方,距離公式要牢記。

  矩形的判定

  任意一個四邊形,三個直角成矩形;

  對角線等互平分,四邊形它是矩形。

  已知平行四邊形,一個直角叫矩形;

  兩對角線若相等,理所當(dāng)然為矩形。

  菱形的判定

  任意一個四邊形,四邊相等成菱形;

  四邊形的對角線,垂直互分是菱形。

  已知平行四邊形,鄰邊相等叫菱形;

  兩對角線若垂直,順理成章為菱形

  初中數(shù)學(xué)記憶口決

  一、數(shù)與代數(shù)

 ?、?、數(shù)與式

  1.有理數(shù)的加法、乘法運(yùn)算

  同號相加一邊倒,異號相加“大”減“小”;符號跟著大的跑,絕對值相等“零”正好。

  同號得正異號負(fù),一項為零積是零?!咀ⅰ?ldquo;大”減“小”是指絕對值的大小。

  2.合并同類項

  合并同類項,法則不能忘;只求系數(shù)代數(shù)和,字母、指數(shù)不變樣。

  3.去、添括號法則

  去括號、添括號,關(guān)鍵看符號;括號前面是正號,去、添括號不變號;

  括號前面是負(fù)號,去、添括號都變號。

  4.單項式運(yùn)算

  加、減、乘、除、乘(開)方,三級運(yùn)算分得清;系數(shù)進(jìn)行同級(運(yùn))算,指數(shù)運(yùn)算降級(進(jìn))行。

  5.分式混合運(yùn)算法則

  分式四則運(yùn)算,順序乘除加減;乘除同級運(yùn)算,除法符號須變(乘);乘法進(jìn)行化簡,因式分解在先;分子分母相約,然后再行運(yùn)算;加減分母需同,分母化積關(guān)鍵;找出最簡公分母,通分不是很難;

  變號必須兩處,結(jié)果要求最簡。

  6.平方差公式

  兩數(shù)和乘兩數(shù)差,等于兩數(shù)平方差;積化和差變兩項,完全平方不是它。

  7.完全平方公式

  首平方又末平方,二倍首末在中央;和的平方加再加,先減后加差平方。

  8.因式分解

  一提二套三分組,十字相乘也上數(shù);四種方法都不行,拆項添項去重組;重組無望試求根,

  換元或者算余數(shù);多種方法靈活選,連乘結(jié)果是基礎(chǔ);同式相乘若出現(xiàn),乘方表示要記住。

  【注】一提(提公因式)二套(套公式)

  9.二次三項式的因式分解

  先想完全平方式,十字相乘是其次;兩種方法行不通,求根分解去嘗試。

  10.比和比例

  兩數(shù)相除也叫比,兩比相等叫比例;基本性質(zhì)第一條,外項積等內(nèi)項積;

  前后項和比后項,組成比例叫合比;前后項差比后項,組成比例是分比;

  兩項和比兩項差,比值相等合分比;前項和比后項和,比值不變叫等比;

  商定變量成正比,積定變量成反比;判斷四數(shù)成比例,兩端積等中間積。

  11.根式和無理式

  表示方根代數(shù)式,都可稱其為根式;根式異于無理式,被開方式無限制;

  無理式都是根式,區(qū)分它們有標(biāo)志;被開方式有字母,才能稱為無理式。

  12.最簡根式的條件

  最簡根式三條件:號內(nèi)不把分母含,冪指(數(shù))根指(數(shù))要互質(zhì),冪指比根指小一點(diǎn)。

  Ⅱ、方程與不等式

  1.解一元一次方程

  已知未知鬧分離,分離方法就是移,加減移項要變號,乘除移了要顛倒。

  先去分母再括號,移項合并同類項;系數(shù)化1還沒好,回代值等才算了。

  2.解一元一次不等式

  去分母、去括號,移項時候要變號;同類項、合并好,再把系數(shù)來除掉;

  兩邊除(以)負(fù)數(shù)時,不等號改向別忘了。

  3.解一元一次絕對值不等式

  大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。

  4.解一元一次不等式組

  大大取較大,小小取較小;大小、小大取中間,大大,小小無處找。

  5.解分式方程

  同乘最簡公分母,化成整式寫清楚;求得解后須驗根,原(根)留、增(根)舍別含糊。

  6.解一元二次方程

  方程沒有一次項,直接開方最理想;如果缺少常數(shù)項,因式分解沒商量;

  b、c相等都為零,等根是零不要忘;b、c同時不為零,因式分解或配方;

  也可直接套公式,因題而異擇良方。

  7.解一元二次不等式

  首先化成一般式,構(gòu)造函數(shù)第二站;判別式值若非負(fù),曲線橫軸有交點(diǎn);

  a正開口它向上,大于零則取兩邊;代數(shù)式若小于零,解集交點(diǎn)數(shù)之間;

  方程若無實(shí)數(shù)根,口上大零解為全;小于零將沒有解,開口向下正相反。

 ?、蟆⒑瘮?shù)

  1.坐標(biāo)系上坐標(biāo)點(diǎn)

  坐標(biāo)平面點(diǎn)(x,y),橫在前來縱在后;X軸上y為0,x為0在Y軸。

  象限角的平分線,坐標(biāo)特征有特點(diǎn);一、三橫縱都相等,二、四橫縱恰相反。

  平行某軸的直線,點(diǎn)的坐標(biāo)有講究;平行于X軸,縱等橫不同;平行于Y軸,橫等縱不同。

  對稱點(diǎn)坐標(biāo)要記牢,相反位置莫混淆;X軸對稱y相反,Y軸對稱X反;原點(diǎn)對稱最好記,橫縱坐標(biāo)變符號。

  2.函數(shù)自變量的取值

  分式分母不為零,偶次根下負(fù)不行;零次冪底數(shù)不為零,整式、奇次根全能行。

  3.判斷正比例函數(shù):

  判斷正比例函數(shù),檢驗當(dāng)分兩步走;一量表示另一量,是與否;若有還要看取值,全體實(shí)數(shù)都要有。

  4.正比例函數(shù)()圖像與性質(zhì)

  正比函數(shù)很簡單,經(jīng)過原點(diǎn)一直線;K正一三負(fù)二四,變化趨勢記心間;

  K正左低右邊高,同大同小向爬山;K負(fù)左高右邊低,一大另小下山巒。

  5.反比例函數(shù)()圖像與性質(zhì)

  反比函數(shù)雙曲線,所有都不過原點(diǎn);K正一三負(fù)二四,兩軸是它漸近線;

  K正左高右邊低,一三象限滑下山;K負(fù)左低右邊高,二四象限如爬山。

  6.一次函數(shù)()圖像與性質(zhì)

  一次函數(shù)是直線,圖像經(jīng)過仨象限;兩個系數(shù)k與b,作用之大莫小看;

  k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;

  k是斜率定夾角,b與Y軸來相見;k的絕對值越大,線離橫軸就越遠(yuǎn)。

  7.一次函數(shù)()圖像與性質(zhì)

  二次方程零換y,二次函數(shù)便出現(xiàn);全體實(shí)數(shù)定義域,圖像叫做拋物線;

  拋物線有對稱軸,兩邊單調(diào)正相反;開口、頂點(diǎn)和交點(diǎn),它們確定圖象現(xiàn);

  開口、大小由a斷,c與Y軸來相見;b的符號較特別,符號與a相關(guān)聯(lián);

  頂點(diǎn)非高即最低。上低下高很顯眼,如果要畫拋物線,平移也可去描點(diǎn);

  提取配方定頂點(diǎn),兩條途徑再挑選,若要平移也不難,先畫基礎(chǔ)拋物線,

  列表描點(diǎn)后連線,平移規(guī)律記心間,左加右減括號內(nèi),號外上加下要減。

  8.三角函數(shù)

  三角函數(shù)的增減性:正增余減。

  特殊三角函數(shù)值(30度、45度、60度)記憶:正弦(值)、余弦(值)分母2、正切(值)、余切(值)分母3。

  二、空間與圖形

 ?、?、線與角

  1.直線、射線與線段

  直線射線與線段,形狀相似有關(guān)聯(lián);直線長短不確定,可向兩方無限延;

  射線僅有一端點(diǎn),反向延長成直線;線段定長兩端點(diǎn),雙向延伸變直線。

  兩點(diǎn)定線是共性,組成圖形最常見。

  2.角

  一點(diǎn)出發(fā)兩射線,組成圖形叫做角;共線反向是平角,平角之半叫直角;

  平角兩倍成周角,小于直角叫銳角;直平之間是鈍角,平周之間叫優(yōu)角;

  和為直角叫互余,和為平角叫互補(bǔ)。

  3.兩點(diǎn)間距離公式

  同軸兩點(diǎn)求距離,大減小數(shù)就為之;與軸等距兩個點(diǎn),間距求法亦如此;

  平面任意兩個點(diǎn),橫縱標(biāo)差先求值;差方相加開平方,距離公式要牢記。

 ?、颉⑵矫鎴D形

  1.平行四邊形的判定

  要證平行四邊形,兩個條件才能行;一證對邊都相等,或證對邊都平行;

  一組對邊也可以,必須相等且平行;

  對角線,是個寶,互相平分“跑不了”;對角相等也有用,“兩組對角”才能成。

  2.矩形的判定

  任意一個四邊形,三個直角成矩形;對角線等互平分,四邊形它是矩形。

  已知平行四邊形,一個直角叫矩形;兩對角線若相等,理所當(dāng)然為矩形。

  3.菱形的判定

  任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形;

  已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形。

  4.梯形的輔助線

  移動梯形對角線,兩腰之和成一線;平行移動一條腰,兩腰同在“△”現(xiàn);

  延長兩腰交一點(diǎn),“△”中有平行線;作出梯形兩高線,矩形顯示在眼前;

  已知腰上一中線,莫忘作出中位線。

  5.三角形的輔助線

  題中若有角(平)分線,可向兩邊作垂線;線段垂直平分線,引向兩端把線連;

  三角形邊兩中點(diǎn),連接則成中位線;三角形中有中線,延長中線翻一番。

  6.圓內(nèi)的正多邊形

  份相等分割圓,n值必須大于三,依次連接各分點(diǎn),內(nèi)接正n邊形在眼前.

  7.圓中比例線段

  遇等積,改等比,橫找豎找定相似;不相似,別生氣,等線等比來代替;

  遇等比,改等積,引用射影和圓冪;平行線,轉(zhuǎn)比例,兩端各自找聯(lián)系。

3642217