2017合肥中考數(shù)學(xué)模擬試卷與解析
考生對(duì)中考數(shù)學(xué)常常不知道該如何復(fù)習(xí),掌握中考數(shù)學(xué)模擬試題多加練習(xí)會(huì)讓考生得到一定幫助,以下是小編精心整理的2017合肥中考數(shù)學(xué)模擬試題與解析,希望能幫到大家!
2017合肥中考數(shù)學(xué)模擬試題
一、選擇題(每小題3分合計(jì)30分)
1.在實(shí)數(shù)﹣ ,﹣2,0, 中,最小的實(shí)數(shù)是( )
A. ﹣2 B. 0 C. ﹣ D.
2.PM2.5是指大氣中直徑≤0.0000025米的顆粒物,將0.0000025用科學(xué)記數(shù)法表示為( )
A. 2.5×10﹣7 B. 2.5×10﹣6 C. 25×10﹣7 D. 0.25×10﹣5
3.下列運(yùn)算正確的是( )
A. 4a2﹣4a2=4a B. (﹣a3b)2=a6b2 C. a+a=a2 D. a2•4a4=4a8
4.如圖是3個(gè)相同的小正方體組合而成的幾何體,它的俯視圖是( )
A. B. C. D.
5.下列圖形是中心對(duì)稱圖形的是( )
A. B. C. D.
6.小玲每天騎自行車(chē)或步行上學(xué),她上學(xué)的路程為2800米,騎自行車(chē)的平均速度是步行平均速度的4倍,騎自行車(chē)比步行上學(xué)早到30分鐘.設(shè)小玲步行的平均速度為x米/分,根據(jù)題意,下面列出的方程正確的是( )
A. B.
C. D.
7.如圖,在□ABCD中,BF平分∠ABC,交AD于F,CE平分∠BCD,交AD于E,AB=6,EF=2,BC長(zhǎng)為( )
A. 8 B. 10 C. 12 D. 14
8.如圖,把一張矩形紙片ABCD沿EF折疊后,點(diǎn)A落在CD邊上的點(diǎn)A′處,點(diǎn)B落在點(diǎn)B′處,若∠2=40°,則圖中∠1的度數(shù)為( )
A. 115° B. 120° C. 130° D. 140°
9.如圖,四邊形ABCD內(nèi)接于⊙O,F(xiàn)是 上一點(diǎn),且 = ,連接CF并延長(zhǎng)交AD的延長(zhǎng)線于點(diǎn)E,連接AC,若∠ABC=105°,∠BAC=25°,則∠E的度數(shù)為( )
A. 45° B. 50° C. 55° D. 60°
10.如圖,邊長(zhǎng)為1的正方形ABCD中有兩個(gè)動(dòng)點(diǎn)P、Q,點(diǎn)P從點(diǎn)B出發(fā)沿BD作勻速運(yùn)動(dòng),到達(dá)D點(diǎn)后停止;同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),沿折線BC→CD作勻速運(yùn)動(dòng),P、Q兩個(gè)點(diǎn)的速度都為每秒1個(gè)單位長(zhǎng)度,如果其中一點(diǎn)停止運(yùn)動(dòng),則另一點(diǎn)也停止運(yùn)動(dòng).設(shè)P、Q兩點(diǎn)的運(yùn)動(dòng)時(shí)間為x秒,兩點(diǎn)之間的距離為y,下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是( )
二、填空題(每小題4分合計(jì)32分)
11.分解因式:mn2+6mn+9m= .
12.如果關(guān)于x的一元二次方程kx2﹣3x﹣1=0有兩個(gè)不相等的實(shí)根,那么k的取值范圍是 .
13.分式 的值為零,則x = ____________.
14.解不等式組: 的解集是 .
15.如果菱形的兩條對(duì)角線的長(zhǎng)為a和b,且a,b滿足(a-1)2+ =0,那么菱形的面積等于 .
16.如圖,在菱形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,OE⊥AB,垂足為E,若∠ADC=120°,則∠AOE=__.
17.如圖,已知點(diǎn)A、B、C、D均在以BC為直徑的圓上,AD∥BC,AC平分∠BCD,∠ADC=120°,四邊形ABCD的周長(zhǎng)為10,則圖中陰影部分的面積為 .
18.如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-3,0)、B(0,4),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到△1、△2、△3、△4…,則△2013的直角頂點(diǎn)的坐標(biāo)為 .
三、解答題
19.計(jì)算:( )﹣2﹣(π﹣ )0+| ﹣2|+4sin60°.
20.先化簡(jiǎn),再求值: ,其中
21.已知關(guān)于x的方程 .
(1)若此方程的一個(gè)根為1,求m的值;
(2)求證:不論m取何實(shí)數(shù),此方程都有兩個(gè)不相等的實(shí)數(shù)根.
22.如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)若△ABC經(jīng)過(guò)平移后得到△A1B1C1,已知點(diǎn)C1的坐標(biāo)為(4,0),寫(xiě)出頂點(diǎn)A1,B1的坐標(biāo);
(2)若△ABC和△A2B2C2關(guān)于原點(diǎn)O成中心對(duì)稱圖形,寫(xiě)出△A2B2C2的各頂點(diǎn)的坐標(biāo);
(3)將△ABC繞著點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)90°得到△A3B3C3,寫(xiě)出△A3B3C3的各頂點(diǎn)的坐標(biāo).
23.將筆記本電腦放置在水平桌面上,顯示屏OB與底板OA夾角為115°(如圖1),側(cè)面示意圖為圖2;使用時(shí)為了散熱,在底板下面墊入散熱架O′AC后,電腦轉(zhuǎn)到AO′B′的位置(如圖3),側(cè)面示意圖為圖4,已知OA=0B=20cm,B′O′⊥OA,垂足為C.
(1)求點(diǎn)O′的高度O′C;(精確到0.1cm)
(2)顯示屏的頂部B′比原來(lái)升高了多少?(精確到0.1cm)
(3)如圖4,要使顯示屏O′B′與原來(lái)的位置OB平行,顯示屏O′B′應(yīng)繞點(diǎn)O′按順時(shí)針?lè)较蛐D(zhuǎn)多少度?
參考數(shù)據(jù):(sin65°=0.906,cos65°=0.423,tan65°=2.146.cot65°=0.446)
24.在一個(gè)不透明的箱子里,裝有黃、白、黑各一個(gè)球,它們除了顏色之外沒(méi)有其他區(qū)別.
(1)隨機(jī)從箱子里取出1個(gè)球,則取出黃球的概率是多少?
(2)隨機(jī)從箱子里取出1個(gè)球,放回?cái)噭蛟偃〉诙€(gè)球,請(qǐng)你用畫(huà)樹(shù)狀圖或列表的方法表示出所有可能出現(xiàn)的結(jié)果,并求兩次取出的都是白色球的概率.
25.為了了解青少年形體情況,現(xiàn)隨機(jī)抽查了某市若干名初中學(xué)生坐姿、站姿、走姿的好壞情況.我們對(duì)測(cè)評(píng)數(shù)據(jù)作了適當(dāng)處理(如果一個(gè)學(xué)生有一種以上不良姿勢(shì),以他最突出的一種作記載),并將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中所給信息解答下列問(wèn)題:
(1)請(qǐng)將兩幅統(tǒng)計(jì)圖補(bǔ)充完整;
(2)請(qǐng)問(wèn)這次被抽查形體測(cè)評(píng)的學(xué)生一共是多少人?
(3)如果全市有5萬(wàn)名初中生,那么全市初中生中,坐姿和站姿不良的學(xué)生有多少人?
26.如圖,在直角坐標(biāo)系中,直線y=﹣ x與反比例函數(shù)y= 的圖象交于關(guān)于原點(diǎn)對(duì)稱的A,B兩點(diǎn),已知A點(diǎn)的縱坐標(biāo)是3.
(1)求反比例函數(shù)的表達(dá)式;
(2)將直線y=﹣ x向上平移后與反比例函數(shù)在第二象限內(nèi)交于點(diǎn)C,如果△ABC的面積為48,求平移后的直線的函數(shù)表達(dá)式.
27.如圖,在AC⊥BC,過(guò)點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),且AD=4,過(guò)點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.
(1)求CE的長(zhǎng);
(2)當(dāng)D在AB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說(shuō)明你的理由;
28.如圖四邊形ABCD內(nèi)接于⊙O ,BD是⊙O 的直徑,AE⊥CD,垂足為E,DA平分∠BDE.
(1)求證:AE是⊙O 的切線;
(2)若∠DBC=30°,DE=1cm,求BD的長(zhǎng).
29.如圖,拋物線的頂點(diǎn)為C(1,﹣2),直線y=kx+m與拋物線交于A、B來(lái)兩點(diǎn),其中A點(diǎn)在x軸的正半軸上,且OA=3,B點(diǎn)在y軸上,點(diǎn)P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與點(diǎn)A、B不重合),過(guò)點(diǎn)P且垂直于x軸的直線與這條拋物線交于點(diǎn)E.
(1)求直線AB的解析式.
(2)設(shè)點(diǎn)P的橫坐標(biāo)為x,求點(diǎn)E的坐標(biāo)(用含x的代數(shù)式表示).
(3)求△ABE面積的最大值.
>>>下一頁(yè)更多“2017合肥中考數(shù)學(xué)模擬試題解析”