2017賀州中考數(shù)學(xué)模擬試卷答案(2)
2017賀州中考數(shù)學(xué)模擬試題答案
1.B
2.C.
3.C
4.B
5.B
6.C
7.C
8.D
9.B
10.C
11.答案為:m<1;
12.答案為:xn-1(x+1)(x-1);
13.答案為:π.
14.略
15.解:tan30°cos60°+tan45°cos30°= = = .
16.
17.(1)將線段AC先向右平移6個(gè)單位,再向下平移8個(gè)單位(答案不唯一).
(2)F(-1,-1).
(3)圖略.它們旋轉(zhuǎn)后的圖形分別是△CMD和△EGA.
18.解:(1)∵拋物線y= x2+(m﹣2)x+2m﹣6的對(duì)稱軸為直線x=1,
∴﹣ =1,解得:m=1;
(2)∵m=1,∴拋物線的解析式為y= x2﹣x﹣4,
當(dāng)y=0時(shí), x2﹣x﹣4=0,解得:x=﹣2或x=4,∴A(﹣2,0),B(4,0),
當(dāng)x=0時(shí),y=﹣4,∴C(0,﹣4),設(shè)直線l的解析式為y=kx+b,
根據(jù)題意得: ,解得: ,∴直線l的解析式為y=﹣x﹣4.
19.【解答】解:(1)過B作BG⊥AD于G,則四邊形BGDF是矩形,∴BG=DF=5米,
∵AB=13米,∴AG= =12米,∴AB的坡度i= =1:2.4;
(2)在Rt△BCF中,BF= = ,在Rt△CEF中,EF= = ,
∵BE=4米,∴BF﹣EF═ ﹣ =4,解得:CF=16.∴DC=CF+DF=16+5=21米.
20.解:(1)把點(diǎn)A(4,3)代入函數(shù)y= 得:a=3×4=12,∴y= .OA= =5,
∵OA=OB,∴OB=5,∴點(diǎn)B的坐標(biāo)為(0,﹣5),
把B(0,﹣5),A(4,3)代入y=kx+b得: 解得: ∴y=2x﹣5.
(2)∵點(diǎn)M在一次函數(shù)y=2x﹣5上,∴設(shè)點(diǎn)M的坐標(biāo)為(x,2x﹣5),
∵M(jìn)B=MC,∴
解得:x=2.5,∴點(diǎn)M的坐標(biāo)為(2.5,0).
21.
22.【解答】解:(1)設(shè)此函數(shù)的解析式為y=a(x+h)2+k,
∵函數(shù)圖象頂點(diǎn)為M(﹣2,﹣4),∴y=a(x+2)2﹣4,
又∵函數(shù)圖象經(jīng)過點(diǎn)A(﹣6,0),∴0=a(﹣6+2)2﹣4解得a= ,
∴此函數(shù)的解析式為y= (x+2)2﹣4,即y= x2+x﹣3;
(2)∵點(diǎn)C是函數(shù)y= x2+x﹣3的圖象與y軸的交點(diǎn),∴點(diǎn)C的坐標(biāo)是(0,﹣3),
又當(dāng)y=0時(shí),有y= x2+x﹣3=0,解得x1=﹣6,x2=2,∴點(diǎn)B的坐標(biāo)是(2,0),
則S△ABC= |AB|•|OC|= ×8×3=12;
(3)假設(shè)存在這樣的點(diǎn),過點(diǎn)P作PE⊥x軸于點(diǎn)E,交AC于點(diǎn)F.
設(shè)E(x,0),則P(x, x2+x﹣3),
設(shè)直線AC的解析式為y=kx+b,
∵直線AC過點(diǎn)A(﹣6,0),C(0,﹣3),∴ ,解得 ,
∴直線AC的解析式為y=﹣ x﹣3,∴點(diǎn)F的坐標(biāo)為F(x,﹣ x﹣3),
則|PF|=﹣ x﹣3﹣( x2+x﹣3)=﹣ x2﹣ x,
∴S△APC=S△APF+S△CPF= |PF|•|AE|+ |PF|•|OE|
= |PF|•|OA|= (﹣ x2﹣ x)×6=﹣ x2﹣ x=﹣ (x+3)2+ ,
∴當(dāng)x=﹣3時(shí),S△APC有最大值 ,此時(shí)點(diǎn)P的坐標(biāo)是P(﹣3,﹣ ).
猜你喜歡: