2017年衡陽中考數(shù)學(xué)練習(xí)試題及答案
考生對中考數(shù)學(xué)往往不知道該怎么備考,多做中考數(shù)學(xué)練習(xí)考題會讓考生得到一定幫助,以下是小編精心整理的2017年衡陽中考數(shù)學(xué)練習(xí)考題及答案,希望能幫到大家!
2017年衡陽中考數(shù)學(xué)練習(xí)考題
一、選擇題:本大題共20小題,在每小題給出的四個選項中,只有一個是正確,請把正確的選項選出來,每小題選對得3分,選錯、不選或選出的答案超過一個,均記零分.
1.若a與1互為相反數(shù),則|a+1|等于( )
A.﹣1 B.0 C.1 D.2
2.下列運算正確的是( )
A.x4+x2=x6 B.x2•x3=x6 C.(x2)3=x6 D.x2﹣y2=(x﹣y)2
3.納米是一種長度單位,1納米=10﹣9米,已知某種花粉的直徑為3500納米,那么用科學(xué)記數(shù)法表示該種花粉的直徑為( )
A.3.5×103米 B.3.5×10﹣5米 C.3.5×10﹣9米 D.3.5×10﹣6米
4.甲骨文是我國的一種古代文字,是漢字的早期形式,下列甲骨文中,不是軸對稱的是( )
A. B. C. D.
5.,是由7個大小相同的小正方體堆砌而成的幾何體,若從標(biāo)有①、②、③、④的四個小正方體中取走一個后,余下幾何體與原幾何體的主視圖相同,則取走的正方體是( )
A.① B.② C.③ D.④
6.化簡( ) •ab,其結(jié)果是( )
A. B. C. D.
7.下列說法不正確的是( )
A.數(shù)據(jù)0、1、2、3、4、5的平均數(shù)是3
B.選舉中,人們通常最關(guān)心的數(shù)據(jù)是眾數(shù)
C.數(shù)據(jù)3、5、4、1、2的中位數(shù)是3
D.甲、乙兩組數(shù)據(jù)的平均數(shù)相同,方差分別是S甲2=0.1,S乙2=0.11,則甲組數(shù)據(jù)比乙組數(shù)據(jù)更穩(wěn)定
8.,∠A+∠B+∠C+∠D+∠E+∠F的度數(shù)為( )
A.180° B.360° C.540° D.720°
9.,直線a∥b,若∠2=55°,∠3=100°,則∠1的度數(shù)為( )
A.35° B.45° C.50° D.55°
10.若不等式組 有解,則實數(shù)a的取值范圍是( )
A.a<﹣36 B.a≤﹣36 C.a>﹣36 D.a≥﹣36
11.某工廠現(xiàn)在平均每天比原計劃多生產(chǎn)50臺機器,現(xiàn)在生產(chǎn)600臺所需時間與原計劃生產(chǎn)450臺機器所需時間相同.設(shè)原計劃平均每天生產(chǎn)x臺機器,根據(jù)題意,下面所列方程正確的是( )
A. = B. = C. = D. =
12.,邊長為2的正方形ABCD中,AE平分∠DAC,AE交CD于點F,CE⊥AE,垂足為點E,EG⊥CD,垂足為點G,點H在邊BC上,BH=DF,連接AH、FH,F(xiàn)H與AC交于點M,以下結(jié)論:
?、貴H=2BH;②AC⊥FH;③S△ACF=1;④CE= AF;⑤EG2=FG•DG,
其中正確結(jié)論的個數(shù)為( )
A.2 B.3 C.4 D.5
13.的兩個圓盤中均有5個數(shù)字,同時旋轉(zhuǎn)兩個圓盤,指針落在某一個數(shù)上的機會均等,那么兩個指針同時落在奇數(shù)上的概率是( )
A. B. C. D.
14.,AB為半圓的直徑,其AB=4,半圓繞點B順時針旋轉(zhuǎn)45°,點A旋轉(zhuǎn)到A′的位置,則圖中陰影部分的面積為( )
A.π B.2π C. D.4π
15.,AB為⊙O的直徑,諸角p,q,r,s之間的關(guān)系(1)p=2q;(2)q=r;(3)p+s=180°中,正確的是( )
A.只有(1)和(2) B.只有(1)和(3) C.只有(2)和(3) D.(1),(2)和(3)
16.將拋物線y=x2﹣2x+3向上平移2個單位長度,再向右平移3個單位長度后,得到的拋物線的解析式為( )
A.y=(x﹣1)2+4 B.y=(x﹣4)2+4 C.y=(x+2)2+6 D.y=(x﹣4)2+6
17.,AB是⊙O的直徑,弦CD⊥AB于點C,點F是CD上一點,且滿足 = ,連接AF并延長交⊙O于點E,連接AD、DE,若CF=2.AF=3.給出下列結(jié)論:
?、佟鰽DF∽△AED;②FG=3;③tan∠E= ;④S△DAF=6 .
其中正確結(jié)論的個數(shù)的是( )
A.1個 B.2個 C.3個 D.4個
18.,在4×4的正方形方格圖形中,小正方形的頂點稱為格點,△ABC的頂點都在格點上,則圖中∠ABC的余弦值是( )
A.2 B. C. D.
19.函數(shù)y=k(x﹣k)與y=kx2,y= (k≠0),在同一坐標(biāo)系上的圖象正確的是( )
A. B. C. D.
20.,在平面直角坐標(biāo)系中,將△ABO繞點A順指針旋轉(zhuǎn)到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點A2在x軸上,依次進(jìn)行下去…,若點A( ,0),B(0,4),則點B2016的橫坐標(biāo)為( )
A.5 B.12 C.10070 D.10080
二、填空題:本大題共4小題,滿分12分,只要求填寫最后結(jié)果,每小題填對得3分.
21.分解因式:x3﹣2x2+x= .
22.,AB是⊙O的直徑,且經(jīng)過弦CD的中點H,過CD延長線上一點E作⊙O的切線,切點為F.若∠ACF=65°,則∠E= .
23.,已知點A、C在反比例函數(shù)y= 的圖象上,點B,D在反比例函數(shù)y= 的圖象上,a>b>0,AB∥CD∥x軸,AB,CD在x軸的兩側(cè),AB= ,CD= ,AB與CD間的距離為6,則a﹣b的值是 .
24.,在矩形ABCD中,M、N分別是邊AD、BC的中點,E、F分別是線段BM、CM的中點.若AB=8,AD=12,則四邊形ENFM的周長為 .
三、解答題:本大題共5小題,滿分48分,解答應(yīng)寫出文字說明、證明過程演算步驟.
25.(9分),在平面直角坐標(biāo)系中,直線AB與x軸交于點B,與y軸交于點A,與反比例函數(shù)y= 的圖象在第二象限交于點C,CE⊥x軸,垂足為點E,tan∠ABO= ,OB=4,OE=2.
(1)求反比例函數(shù)的解析式;
(2)若點D是反比例函數(shù)圖象在第四象限上的點,過點D作DF⊥y軸,垂足為點F,連接OD、BF.如果S△BAF=4S△DFO,求點D的坐標(biāo).
26.(9分)在△ABC中,AB=AC,∠BAC=2∠DAE=2α.
(1)1,若點D關(guān)于直線AE的對稱點為F,求證:△ADF∽△ABC;
(2)2,在(1)的條件下,若α=45°,求證:DE2=BD2+CE2;
(3)3,若α=45°,點E在BC的延長線上,則等式DE2=BD2+CE2還能成立嗎?請說明理由.
27.(8分)某服裝點用6000購進(jìn)A,B兩種新式服裝,按標(biāo)價售出后可獲得毛利潤3800元(毛利潤=售價﹣進(jìn)價),這兩種服裝的進(jìn)價,標(biāo)價如表所示.
類型
價格 A型 B型
進(jìn)價(元/件) 60 100
標(biāo)價(元/件) 100 160
(1)求這兩種服裝各購進(jìn)的件數(shù);
(2)如果A種服裝按標(biāo)價的8折出售,B種服裝按標(biāo)價的7折出售,那么這批服裝全部售完后,服裝店比按標(biāo)價出售少收入多少元?
28.(10分),已知菱形ABCD的邊長為2,∠ADC=60°,等邊三角形△AEF兩邊分別交邊DC,CB于點E,F(xiàn).
(1)求證:△ADE≌△ACF;
(2)2所示,若點E,F(xiàn)始終分別在邊DC,CB上移動,記等邊△AEF面積為S,則S是否存在最小值?若存在,值為多少;若不存在,請說明理由;
(3)若S存在最小值,對角線AC上是否存在點P,使△PDE的周長最小?若存在,請求出這個最小值;若不存在,請說明理由.
29.(12分)已知,m,n是一元二次方程x2+4x+3=0的兩個實數(shù)根,且|m|<|n|,拋物線y=x2+bx+c的圖象經(jīng)過點A(m,0),B(0,n),所示.
(1)求這個拋物線的解析式;
(2)設(shè)(1)中的拋物線與x軸的另一個交點為C,拋物線的頂點為D,試求出點C,D的坐標(biāo),并判斷△BCD的形狀;
(3)點P是直線BC上的一個動點(點P不與點B和點C重合),過點P作x軸的垂線,交拋物線于點M,點Q在直線BC上,距離點P為 個單位長度,設(shè)點P的橫坐標(biāo)為t,△PMQ的面積為S,求出S與t之間的函數(shù)關(guān)系式.
2017年衡陽中考數(shù)學(xué)練習(xí)考題答案
一、選擇題:本大題共20小題,在每小題給出的四個選項中,只有一個是正確,請把正確的選項選出來,每小題選對得3分,選錯、不選或選出的答案超過一個,均記零分.
1.若a與1互為相反數(shù),則|a+1|等于( )
A.﹣1 B.0 C.1 D.2
【考點】15:絕對值;14:相反數(shù).
【分析】根據(jù)絕對值和相反數(shù)的定義求解即可.
【解答】解:因為互為相反數(shù)的兩數(shù)和為0,所以a+1=0;
因為0的絕對值是0,則|a+1|=|0|=0.
故選B.
【點評】本題考查了絕對值與相反數(shù),絕對值的定義:一個正數(shù)的絕對值是它本身;一個負(fù)數(shù)的絕對值是它的相反數(shù);0的絕對值是0.相反數(shù)的定義:只有符號不同的兩個數(shù)互為相反數(shù),0的相反數(shù)是0.
2.下列運算正確的是( )
A.x4+x2=x6 B.x2•x3=x6 C.(x2)3=x6 D.x2﹣y2=(x﹣y)2
【考點】47:冪的乘方與積的乘方;35:合并同類項;46:同底數(shù)冪的乘法;54:因式分解﹣運用公式法.
【分析】根據(jù)合并同類項法則、同底數(shù)冪的乘法法則、積的乘方法則和公式法進(jìn)行因式分解對各個選項進(jìn)行判斷即可.
【解答】解:x4與x2不是同類項,不能合并,A錯誤;
x2•x3=x5,B錯誤;
(x2)3=x6,C正確;
x2﹣y2=(x+y)(x﹣y),D錯誤,
故選:C.
【點評】本題考查的是合并同類項、同底數(shù)冪的乘法、積的乘方和因式分解,掌握合并同類項法則、同底數(shù)冪的乘法法則、積的乘方法則和利用平方差公式進(jìn)行因式分解是解題的關(guān)鍵.
3.納米是一種長度單位,1納米=10﹣9米,已知某種花粉的直徑為3500納米,那么用科學(xué)記數(shù)法表示該種花粉的直徑為( )
A.3.5×103米 B.3.5×10﹣5米 C.3.5×10﹣9米 D.3.5×10﹣6米
【考點】1J:科學(xué)記數(shù)法—表示較小的數(shù).
【分析】先把3 500納米換算成3 500×10﹣9米,再用科學(xué)記數(shù)法表示為3.5×10﹣6.
絕對值<1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10﹣n.與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.
【解答】解:3 500納米=3 500×10﹣9米=3.5×10﹣6.
故選D.
【點評】本題考查用科學(xué)記數(shù)法表示較小的數(shù).一般形式為a×10﹣n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.
4.甲骨文是我國的一種古代文字,是漢字的早期形式,下列甲骨文中,不是軸對稱的是( )
A. B. C. D.
【考點】P3:軸對稱圖形.
【分析】根據(jù)軸對稱圖形的概念求解.
【解答】解:A、是軸對稱圖形,故本選項錯誤;
B、是軸對稱圖形,故本選項錯誤;
C、是軸對稱圖形,故本選項錯誤;
D、不是軸對稱圖形,故本選項正確.
故選D.
【點評】本題考查了軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.
5.,是由7個大小相同的小正方體堆砌而成的幾何體,若從標(biāo)有①、②、③、④的四個小正方體中取走一個后,余下幾何體與原幾何體的主視圖相同,則取走的正方體是( )
A.① B.② C.③ D.④
【考點】U2:簡單組合體的三視圖.
【分析】根據(jù)題意得到原幾何體的主視圖,結(jié)合主視圖選擇.
【解答】解:原幾何體的主視圖是:
.
故取走的正方體是①.
故選:A.
【點評】本題考查了簡單組合體的三視圖.視圖中每一個閉合的線框都表示物體上的一個平面,而相連的兩個閉合線框常不在一個平面上.
6.化簡( ) •ab,其結(jié)果是( )
A. B. C. D.
【考點】6C:分式的混合運算.
【分析】原式括號中兩項通分并利用同分母分式的加減法則計算,約分即可得到結(jié)果.
【解答】解:原式= • •ab= ,
故選B
【點評】此題考查了分式的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.
7.下列說法不正確的是( )
A.數(shù)據(jù)0、1、2、3、4、5的平均數(shù)是3
B.選舉中,人們通常最關(guān)心的數(shù)據(jù)是眾數(shù)
C.數(shù)據(jù)3、5、4、1、2的中位數(shù)是3
D.甲、乙兩組數(shù)據(jù)的平均數(shù)相同,方差分別是S甲2=0.1,S乙2=0.11,則甲組數(shù)據(jù)比乙組數(shù)據(jù)更穩(wěn)定
【考點】WA:統(tǒng)計量的選擇;W1:算術(shù)平均數(shù);W4:中位數(shù);W5:眾數(shù);W7:方差.
【分析】根據(jù)平均數(shù)、眾數(shù)、中位數(shù)、方差的定義分別計算、判斷即可.
【解答】解:A、數(shù)據(jù)0、1、2、3、4、5的平均數(shù)是 ×(0+1+2+3+4+5)=2.5,此選項錯誤;
B、選舉中,人們通常最關(guān)心的數(shù)據(jù)是得票數(shù)最多的,即眾數(shù),此選項正確;
C、數(shù)據(jù)3、5、4、1、2從小到大排列后為1、2、3、4、5,其中位數(shù)為3,此選項正確;
D、∵S甲2
∴甲組數(shù)據(jù)比乙組數(shù)據(jù)更穩(wěn)定,此選項正確;
故選:A.
【點評】本題主要考查平均數(shù)、眾數(shù)、中位數(shù)、方差,熟練掌握其概念及意義是解題的關(guān)鍵.
8.,∠A+∠B+∠C+∠D+∠E+∠F的度數(shù)為( )
A.180° B.360° C.540° D.720°
【考點】K8:三角形的外角性質(zhì);K7:三角形內(nèi)角和定理.
【分析】利用三角形外角的性質(zhì)及三角形的內(nèi)角和定理即可計算.
【解答】解:,
∠AKH=∠A+∠B=∠HGK+∠KHG,
∠CGK=∠C+∠D=∠GKH+∠KHG,
∠FHB=∠E+∠F=∠HKG+∠KGH,
∴∠A+∠B+∠C+∠D+∠E+∠F=2(∠HGK+∠KHG+∠GKH)=2×180°=360°.
故選:B.
【點評】本題考查三角形外角的性質(zhì)及三角形的內(nèi)角和定理,實際上證明了三角形的外角和是360°,解答的關(guān)鍵是溝通外角和內(nèi)角的關(guān)系.
9.,直線a∥b,若∠2=55°,∠3=100°,則∠1的度數(shù)為( )
A.35° B.45° C.50° D.55°
【考點】JA:平行線的性質(zhì).
【分析】根據(jù)兩直線平行,同位角相等可得∠4=∠2,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和列式計算即可得解.
【解答】解:,∵直線a∥b,
∴∠4=∠2=55°,
∴∠1=∠3﹣∠4=100°﹣55°=45°.
故選B.
【點評】本題考查了平行線的性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),熟記性質(zhì)并準(zhǔn)確識圖是解題的關(guān)鍵.
10.若不等式組 有解,則實數(shù)a的取值范圍是( )
A.a<﹣36 B.a≤﹣36 C.a>﹣36 D.a≥﹣36
【考點】CB:解一元一次不等式組.
【分析】先求出不等式組中每一個不等式的解集,不等式組有解,即兩個不等式的解集有公共部分,據(jù)此即可列不等式求得a的范圍.
【解答】解: ,
解①得:x
解②得:x≥﹣37,
∵方程有解,
∴a﹣1>﹣37,
解得:a>﹣36.
故選:C.
【點評】本題考查的是一元一次不等式組的解,解此類題目常常要結(jié)合數(shù)軸來判斷.還可以觀察不等式的解,若x大于較小的數(shù)、小于較大的數(shù),那么解集為x介于兩數(shù)之間.
11.某工廠現(xiàn)在平均每天比原計劃多生產(chǎn)50臺機器,現(xiàn)在生產(chǎn)600臺所需時間與原計劃生產(chǎn)450臺機器所需時間相同.設(shè)原計劃平均每天生產(chǎn)x臺機器,根據(jù)題意,下面所列方程正確的是( )
A. = B. = C. = D. =
【考點】B6:由實際問題抽象出分式方程.
【分析】設(shè)原計劃平均每天生產(chǎn)x臺機器,則實際平均每天生產(chǎn)(x+50)臺機器,根據(jù)題意可得,現(xiàn)在生產(chǎn)600臺所需時間與原計劃生產(chǎn)450臺機器所需時間相同,據(jù)此列方程即可.
【解答】解:設(shè)原計劃平均每天生產(chǎn)x臺機器,則實際平均每天生產(chǎn)(x+50)臺機器,
由題意得, = .
故選B.
【點評】本題考查了由實際問題抽象出分式方程,解答本題的關(guān)鍵是讀懂題意,設(shè)出未知數(shù),找出合適的等量關(guān)系,列方程.
12.,邊長為2的正方形ABCD中,AE平分∠DAC,AE交CD于點F,CE⊥AE,垂足為點E,EG⊥CD,垂足為點G,點H在邊BC上,BH=DF,連接AH、FH,F(xiàn)H與AC交于點M,以下結(jié)論:
①FH=2BH;②AC⊥FH;③S△ACF=1;④CE= AF;⑤EG2=FG•DG,
其中正確結(jié)論的個數(shù)為( )
A.2 B.3 C.4 D.5
【考點】LO:四邊形綜合題.
【分析】①②、證明△ABH≌△ADF,得AF=AH,再得AC平分∠FAH,則AM既是中線,又是高線,得AC⊥FH,證明BH=HM=MF=FD,則FH=2BH;所以①②都正確;
?、劭梢灾苯忧蟪鯢C的長,計算S△ACF≠1,錯誤;
④根據(jù)正方形邊長為2,分別計算CE和AF的長得結(jié)論正確;還可以利用圖2證明△ADF≌△CDN得:CN=AF,由CE= CN= AF;
⑤利用相似先得出EG2=FG•CG,再根據(jù)同角的三角函數(shù)列式計算CG的長為1,則DG=CG,所以⑤也正確.
【解答】解:①②1,∵四邊形ABCD是正方形,
∴AB=AD,∠B=∠D=90°,∠BAD=90°,
∵AE平分∠DAC,
∴∠FAD=∠CAF=22.5°,
∵BH=DF,
∴△ABH≌△ADF,
∴AH=AF,∠BAH=∠FAD=22.5°,
∴∠HAC=∠FAC,
∴HM=FM,AC⊥FH,
∵AE平分∠DAC,
∴DF=FM,
∴FH=2DF=2BH,
故選項①②正確;
③在Rt△FMC中,∠FCM=45°,
∴△FMC是等腰直角三角形,
∵正方形的邊長為2,
∴AC=2 ,MC=DF=2 ﹣2,
∴FC=2﹣DF=2﹣(2 ﹣2)=4﹣2 ,
S△AFC= CF•AD≠1,
所以選項③不正確;
?、蹵F= = =2 ,
∵△ADF∽△CEF,
∴ ,
∴ ,
∴CE= ,
∴CE= AF,
故選項④正確;
⑤延長CE和AD交于N,2,
∵AE⊥CE,AE平分∠CAD,
∴CE=EN,
∵EG∥DN,
∴CG=DG,
在Rt△FEC中,EG⊥FC,
∴EG2=FG•CG,
∴EG2=FG•DG,
故選項⑤正確;
本題正確的結(jié)論有4個,
故選C.
【點評】本題是四邊形的綜合題,綜合考查了正方形、相似三角形、全等三角形的性質(zhì)和判定;求邊時可以利用三角形相似列比例式,也可以直接利用同角三角函數(shù)列式計算;同時運用了勾股定理求線段的長,勾股定理在正方形中運用得比較多.
13.的兩個圓盤中均有5個數(shù)字,同時旋轉(zhuǎn)兩個圓盤,指針落在某一個數(shù)上的機會均等,那么兩個指針同時落在奇數(shù)上的概率是( )
A. B. C. D.
【考點】X6:列表法與樹狀圖法.
【分析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩個指針同時落在奇數(shù)上的情況,再利用概率公式即可求得答案.
【解答】解:畫樹狀圖得:
∵共有25種等可能的結(jié)果,兩個指針同時落在奇數(shù)上的有4種情況,
∴兩個指針同時落在奇數(shù)上的概率是: .
故選A.
【點評】此題考查了列表法或樹狀圖法求概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.
14.,AB為半圓的直徑,其AB=4,半圓繞點B順時針旋轉(zhuǎn)45°,點A旋轉(zhuǎn)到A′的位置,則圖中陰影部分的面積為( )
A.π B.2π C. D.4π
【考點】MO:扇形面積的計算;R2:旋轉(zhuǎn)的性質(zhì).
【分析】先根據(jù)旋轉(zhuǎn)的性質(zhì)得S半圓AB=S半圓A′B,∠ABA′=45°,再利用面積的和差得到S陰影部分+S半圓AB=S半圓A′B+S扇形ABA′,即有S陰影部分=S扇形ABA′,然后根據(jù)扇形的面積公式計算即可.
【解答】解:∵半圓AB繞點B順時針旋轉(zhuǎn)45°,點A旋轉(zhuǎn)到A′的位置,
∴S半圓AB=S半圓A′B,∠ABA′=45°,
∵S陰影部分+S半圓AB=S半圓A′B+S扇形ABA′,
∴S陰影部分=S扇形ABA′= =2π.
故選B.
【點評】本題考查的是扇形面積的計算,熟記扇形的面積公式是解答此題的關(guān)鍵.
15.,AB為⊙O的直徑,諸角p,q,r,s之間的關(guān)系(1)p=2q;(2)q=r;(3)p+s=180°中,正確的是( )
A.只有(1)和(2) B.只有(1)和(3) C.只有(2)和(3) D.(1),(2)和(3)
【考點】M5:圓周角定理;M6:圓內(nèi)接四邊形的性質(zhì).
【分析】由圖知:q與∠A是等腰三角形的底角,因此q=∠A,根據(jù)圓周角定理可得:q=r=∠A,p=r+q=2q,故(1)(2)正確;由圓內(nèi)接四邊形的對角互補知,∠A+s=180°,故(3)不正確.
【解答】解:∵q=∠A,r=∠A;∴r=q;
∵p=2∠A,∴p=2q.因此(1)(2)正確.
∵∠A+s=180°,p=2∠A;
∴p+s>180°.因此(3)不正確.
故選A.
【點評】本題考查等腰三角形的性質(zhì)、圓周角定理、圓內(nèi)接四邊形的性質(zhì)等知識的應(yīng)用能力.
16.將拋物線y=x2﹣2x+3向上平移2個單位長度,再向右平移3個單位長度后,得到的拋物線的解析式為( )
A.y=(x﹣1)2+4 B.y=(x﹣4)2+4 C.y=(x+2)2+6 D.y=(x﹣4)2+6
【考點】H6:二次函數(shù)圖象與幾何變換.
【分析】根據(jù)函數(shù)圖象向上平移加,向右平移減,可得函數(shù)解析式.
【解答】解:將y=x2﹣2x+3化為頂點式,得y=(x﹣1)2+2.
將拋物線y=x2﹣2x+3向上平移2個單位長度,再向右平移3個單位長度后,得到的拋物線的解析式為y=(x﹣4)2+4,
故選:B.
【點評】本題考查了二次函數(shù)圖象與幾何變換,函數(shù)圖象的平移規(guī)律是:左加右減,上加下減.
17.,AB是⊙O的直徑,弦CD⊥AB于點C,點F是CD上一點,且滿足 = ,連接AF并延長交⊙O于點E,連接AD、DE,若CF=2.AF=3.給出下列結(jié)論:
?、佟鰽DF∽△AED;②FG=3;③tan∠E= ;④S△DAF=6 .
其中正確結(jié)論的個數(shù)的是( )
A.1個 B.2個 C.3個 D.4個
【考點】SO:相似形綜合題.
【分析】由垂徑定理得出CG=DG, = ,得出圓周角∠ADF=∠E,再由公共角相等,即可得出△ADF∽△AED,①正確;
由已知條件求出FD,得出CD、CG,即可求出FG=2,②錯誤;
由相交弦定理求出EF,得出AE,由△ADF∽△AED,得出對應(yīng)邊成比例 = ,求出AD2=21,由勾股定理求出AG,得出tan∠E=tan∠ADF= = ,③正確;
根據(jù)三角形的面積公式即可得到S△ADF=3 ,④錯誤.
【解答】解:∵AB是⊙O的直徑,弦CD⊥AB,
∴CG=DG, = ,∠AGF=∠AGD=90°,
∴∠ADF=∠E,
又∵∠DAF=∠EAD,
∴△ADF∽△AED,
∴①正確;
∵ = ,CF=2,
∴FD=6,
∴CD=8,
∵CG=DG,
∴CG=DG=4,
∴FG=2,
∴②錯誤;
∵AF•EF=CF•FD,
即3EF=2×6,
∴EF=4,
∴AE=7,
∵△ADF∽△AED,
∴ = ,
∴AD2=AE×AF=7×3=21,
在Rt△ADG中,AG= = = ,
∴tan∠E=tan∠ADF= = ,
∴③錯誤;
∴S△ADF= FD•AG= =3 ,
∴④錯誤;
故選A.
>>>下一頁更多“2017年衡陽中考數(shù)學(xué)練習(xí)考題及答案”