2017年吉林省中考數(shù)學(xué)練習(xí)試卷及答案
學(xué)生想在中考得到好成績(jī)備考的時(shí)候就要多做中考數(shù)學(xué)練習(xí)試題,并加以復(fù)習(xí),這樣能更快提升自己的成績(jī)。以下是小編精心整理的2017年吉林省中考數(shù)學(xué)練習(xí)試題及答案,希望能幫到大家!
2017年吉林省中考數(shù)學(xué)練習(xí)試題
一、選擇題(本大題共15個(gè)小題,每小題3分,共45分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)
1. 的平方根是( )
A.81 B.±3 C.﹣3 D.3
2.下列圖形中,既是軸對(duì)稱(chēng)圖形又是中心對(duì)稱(chēng)圖形的是( )
A. B. C. D.
3.如圖,四邊形ABCD中,∠A=90°,AB= ,AD=3,點(diǎn)M,N分別為線(xiàn)段BC,AB上的動(dòng)點(diǎn)(含端點(diǎn),但點(diǎn)M不與點(diǎn)B重合),點(diǎn)E,F(xiàn)分別為DM,MN的中點(diǎn),則EF長(zhǎng)度的最大值為( )
A.3 B.4 C.4.5 D.5
4.已知關(guān)于x的分式方程 + =1的解是非負(fù)數(shù),則m的取值范圍是( )
A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠3
5.商店某天銷(xiāo)售了14件襯衫,其領(lǐng)口尺寸統(tǒng)計(jì)如表:
領(lǐng)口尺寸(單位:cm) 38 39 40 41 42
件數(shù) 1 5 3 3 2
則這14件襯衫領(lǐng)口尺寸的眾數(shù)與中位數(shù)分別是( )
A.39cm、39cm B.39cm、39.5cm C.39cm、40cm D.40cm、40cm
6.如圖,⊙O是△ABC的內(nèi)切圓,切點(diǎn)分別是D、E、F,已知∠A=100°,∠C=30°,則∠DFE的度數(shù)是( )
A.55° B.60° C.65° D.70°
7.已知m、n是方程x2+3x﹣2=0的兩個(gè)實(shí)數(shù)根,則m2+4m+n+2mn的值為( )
A.1 B.3 C.﹣5 D.﹣9
8.若關(guān)于x的不等式 的整數(shù)解共有4個(gè),則m的取值范圍是( )
A.6
9.如圖,AC⊥BC,AC=BC=4,以BC為直徑作半圓,圓心為點(diǎn)O;以點(diǎn)C為圓心,BC為半徑作 ,過(guò)點(diǎn)O作AC的平行線(xiàn)交兩弧于點(diǎn)D、E,則陰影部分的面積是( )
A. B. C.2 D.
10.如圖,已知四邊形ABCD為等腰梯形,AD∥BC,AB=CD,AD= ,E為CD中點(diǎn),連接AE,且AE=2 ,∠DAE=30°,作AE⊥AF交BC于F,則BF=( )
A.1 B.3﹣ C. ﹣1 D.4﹣2
11.如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),OP=5cm,點(diǎn)M和點(diǎn)N分別是射線(xiàn)OA和射線(xiàn)OB上的動(dòng)點(diǎn),△PMN周長(zhǎng)的最小值是5cm,則∠AOB的度數(shù)是( )
A.25° B.30° C.35° D.40°
12.如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y= 在第一象限的圖象經(jīng)過(guò)點(diǎn)B,則△OAC與△BAD的面積之差S△OAC﹣S△BAD為( )
A.36 B.12 C.6 D.3
13.如圖,已知AB=12,點(diǎn)C,D在AB上,且AC=DB=2,點(diǎn)P從點(diǎn)C沿線(xiàn)段CD向點(diǎn)D運(yùn)動(dòng)(運(yùn)動(dòng)到點(diǎn)D停止),以AP、BP為斜邊在AB的同側(cè)畫(huà)等腰Rt△APE和等腰Rt△PBF,連接EF,取EF的中點(diǎn)G,下列說(shuō)法中正確的有( )
?、佟鱁FP的外接圓的圓心為點(diǎn)G;②四邊形AEFB的面積不變;
?、跡F的中點(diǎn)G移動(dòng)的路徑長(zhǎng)為4;④△EFP的面積的最小值為8.
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
14.二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過(guò)點(diǎn)(﹣1,0),對(duì)稱(chēng)軸為直線(xiàn)x=2,下列結(jié)論:(1)2a+b=0;(2)9a+c>3b;(3)5a+7b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣ ,y2)、點(diǎn)C( ,y3)在該函數(shù)圖象上,則y1
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
15.如圖,Rt△ABC中∠C=90°,∠BAC=30°,AB=8,以2 為邊長(zhǎng)的正方形DEFG的一邊GD在直線(xiàn)AB上,且點(diǎn)D與點(diǎn)A重合,現(xiàn)將正方形DEFG沿A﹣B的方向以每秒1個(gè)單位的速度勻速運(yùn)動(dòng),當(dāng)點(diǎn)D與點(diǎn)B重合時(shí)停止,則在這個(gè)運(yùn)動(dòng)過(guò)程中,正方形DEFG與△ABC的重合部分的面積S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系圖象大致是( )
A. B.
C. D.
二、填空題(本大題共6個(gè)小題,每小題3分,共18分.)
16.分解因式:2x2﹣12x﹣32= .
17.如果方程kx2+2x+1=0有實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是 .
18.一個(gè)包裝盒的設(shè)計(jì)方法如圖所示,ABCD是邊長(zhǎng)為60cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線(xiàn)折起,使得ABCD四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱形狀的包裝盒,E、F在AB上是被切去的等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AE=FB=xcm.若廣告商要求包裝盒側(cè)面積S(cm2)最大,試問(wèn)x應(yīng)取的值為 cm.
19.如圖在平面直角坐標(biāo)系xOy中,直線(xiàn)l經(jīng)過(guò)點(diǎn) A(﹣1,0),點(diǎn) A1,A2,A3,A4,A5,…按所示的規(guī)律排列在直線(xiàn)l上.若直線(xiàn)l上任意相鄰兩個(gè)點(diǎn)的橫坐標(biāo)都相差1、縱坐標(biāo)也都相差1,若點(diǎn)An(n為正整數(shù))的橫坐標(biāo)為2015,則n= .
20.如圖,已知△ABC,外心為O,BC=6,∠BAC=60°,分別以AB、AC為腰向形外作等腰直角三角形△ABD與△ACE,連接BE、CD交于點(diǎn)P,則OP的最小值是 .
21.如圖,點(diǎn)A在雙曲線(xiàn)y= 的第一象限的那一支上,AB⊥y軸于點(diǎn)B,點(diǎn)C在x軸正半軸上,且OC=2AB,點(diǎn)E在線(xiàn)段AC上,且AE=3EC,點(diǎn)D為OB的中點(diǎn),若△ADE的面積為 ,則k的值為 .
三、解答題(本大題共7個(gè)小題,共57分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.)
22.(6分)先化簡(jiǎn)再計(jì)算: ,其中x是一元二次方程x2﹣2x﹣2=0的正數(shù)根.
23.(8分)如圖,四邊形ABCD為菱形,點(diǎn)E為對(duì)角線(xiàn)AC上的一個(gè)動(dòng)點(diǎn),連結(jié)DE并延長(zhǎng)交AB于點(diǎn)F,連結(jié)BE.
(1)如圖①:求證∠AFD=∠EBC;
(2)如圖②,若DE=EC且BE⊥AF,求∠DAB的度數(shù);
(3)若∠DAB=90°且當(dāng)△BEF為等腰三角形時(shí),求∠EFB的度數(shù)(只寫(xiě)出條件與對(duì)應(yīng)的結(jié)果)
24.(8分)某校開(kāi)展了“互助、平等、感恩、和諧、進(jìn)取”主題班會(huì)活動(dòng),活動(dòng)后,就活動(dòng)的5個(gè)主題進(jìn)行了抽樣調(diào)查為了給學(xué)生提供更好的學(xué)習(xí)生活環(huán)境,重慶一中寄宿學(xué)校2015年對(duì)校園進(jìn)行擴(kuò)建.某天一臺(tái)塔吊正對(duì)新建教學(xué)樓進(jìn)行封頂施工,工人在樓頂A處測(cè)得吊鉤D處的俯角α=22°,測(cè)得塔吊B,C兩點(diǎn)的仰角分別為β=27°,γ=50°,此時(shí)B與C距3米,塔吊需向A處吊運(yùn)材料.(tan27°≈0.5,tan50°≈1.2,tan22°≈0.4)
(1)吊鉤需向右、向上分別移動(dòng)多少米才能將材料送達(dá)A處?
(2)封頂工程完畢后需盡快完成新建教學(xué)樓的裝修工程.如果由甲、乙兩個(gè)工程隊(duì)合做,12天可完成;如果由甲、乙兩隊(duì)單獨(dú)做,甲隊(duì)比乙隊(duì)少用10天完成.求甲、乙兩工程隊(duì)單獨(dú)完成此項(xiàng)工程所需的天數(shù).
26.(8分)母親節(jié)前夕,某淘寶店主從廠家購(gòu)進(jìn)A、B兩種禮盒,已知A、B兩種禮盒的單價(jià)比為2:3,單價(jià)和為200元.
(1)求A、B兩種禮盒的單價(jià)分別是多少元?
(2)該店主購(gòu)進(jìn)這兩種禮盒恰好用去9600元,且購(gòu)進(jìn)A種禮盒最多36個(gè),B種禮盒的數(shù)量不超過(guò)A種禮盒數(shù)量的2倍,共有幾種進(jìn)貨方案?
(3)根據(jù)市場(chǎng)行情,銷(xiāo)售一個(gè)A種禮盒可獲利10元,銷(xiāo)售一個(gè)B種禮盒可獲利18元.為奉獻(xiàn)愛(ài)心,該店主決定每售出一個(gè)B種禮盒,為愛(ài)心公益基金捐款m元,每個(gè)A種禮盒的利潤(rùn)不變,在(2)的條件下,要使禮盒全部售出后所有方案獲利相同,m值是多少?此時(shí)店主獲利多少元?
27.(9分)⊙O是△ABC的外接圓,AB是直徑,過(guò) 的中點(diǎn)P作⊙O的直徑PG,與弦BC相交于點(diǎn)D,連接AG、CP、PB.
(1)如圖1,求證:AG=CP;
(2)如圖2,過(guò)點(diǎn)P作AB的垂線(xiàn),垂足為點(diǎn)H,連接DH,求證:DH∥AG;
(3)如圖3,連接PA,延長(zhǎng)HD分別與PA、PC相交于點(diǎn)K、F,已知FK=2,△ODH的面積為2 ,求AC的長(zhǎng).
28.(10分)如圖,在平面直角坐標(biāo)系中,直線(xiàn) 與拋物線(xiàn) 交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為﹣8.
(1)求該拋物線(xiàn)的解析式;
(2)點(diǎn)P是直線(xiàn)AB上方的拋物線(xiàn)上一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),過(guò)點(diǎn)P作x軸的垂線(xiàn),垂足為C,交直線(xiàn)AB于點(diǎn)D,作PE⊥AB于點(diǎn)E.
?、僭O(shè)△PDE的周長(zhǎng)為l,點(diǎn)P的橫坐標(biāo)為x,求l關(guān)于x的函數(shù)關(guān)系式,并求出l的最大值;
?、谶B接PA,以PA為邊作圖示一側(cè)的正方形APFG.隨著點(diǎn)P的運(yùn)動(dòng),正方形的大小、位置也隨之改變.當(dāng)頂點(diǎn)F或G恰好落在y軸上時(shí),直接寫(xiě)出對(duì)應(yīng)的點(diǎn)P的坐標(biāo).
2017年吉林省中考數(shù)學(xué)練習(xí)試題答案
一、選擇題(本大題共15個(gè)小題,每小題3分,共45分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)
1. 的平方根是( )
A.81 B.±3 C.﹣3 D.3
【考點(diǎn)】21:平方根.
【分析】首先求出81的算術(shù)平方根,然后再求其結(jié)果的平方根.
【解答】解:∵ =9,
而9=(±3)2,
∴ 的平方根是±3.
故選B.
【點(diǎn)評(píng)】本題主要考查算術(shù)平方根和平方根的知識(shí)點(diǎn),是基礎(chǔ)題需要重點(diǎn)掌握.
2.下列圖形中,既是軸對(duì)稱(chēng)圖形又是中心對(duì)稱(chēng)圖形的是( )
A. B. C. D.
【考點(diǎn)】R5:中心對(duì)稱(chēng)圖形;P3:軸對(duì)稱(chēng)圖形.
【分析】依據(jù)軸對(duì)稱(chēng)圖形的定義和中心對(duì)稱(chēng)圖形的定義回答即可.
【解答】解:A、是軸對(duì)稱(chēng)圖形,但不是中心對(duì)稱(chēng)圖形,故A錯(cuò)誤;
B、是中心對(duì)稱(chēng)圖形,不是軸對(duì)稱(chēng)圖形,故B錯(cuò)誤;
C、是軸對(duì)稱(chēng)圖形,不是中心對(duì)稱(chēng)圖形,故C錯(cuò)誤;
D、既是軸對(duì)稱(chēng)圖形,也是中心對(duì)稱(chēng)圖形,故D正確.
故選:D.
【點(diǎn)評(píng)】本題主要考查的是軸對(duì)稱(chēng)圖形和中心對(duì)稱(chēng)圖形,掌握軸對(duì)稱(chēng)圖形和中心對(duì)稱(chēng)圖形的特點(diǎn)是解題的關(guān)鍵.
3.如圖,四邊形ABCD中,∠A=90°,AB= ,AD=3,點(diǎn)M,N分別為線(xiàn)段BC,AB上的動(dòng)點(diǎn)(含端點(diǎn),但點(diǎn)M不與點(diǎn)B重合),點(diǎn)E,F(xiàn)分別為DM,MN的中點(diǎn),則EF長(zhǎng)度的最大值為( )
A.3 B.4 C.4.5 D.5
【考點(diǎn)】KX:三角形中位線(xiàn)定理.
【分析】根據(jù)三角形中位線(xiàn)定理可知EF= DN,求出DN的最大值即可.
【解答】解:如圖,連結(jié)DN,
∵DE=EM,F(xiàn)N=FM,
∴EF= DN,
當(dāng)點(diǎn)N與點(diǎn)B重合時(shí),DN的值最大即EF最大,
在RTABD中,∵∠A=90°,AD=3,AB=3 ,
∴BD= = =6,
∴EF的最大值= BD=3.
故選A.
【點(diǎn)評(píng)】本題考查三角形中位線(xiàn)定理、勾股定理等知識(shí),解題的關(guān)鍵是中位線(xiàn)定理的靈活應(yīng)用,學(xué)會(huì)轉(zhuǎn)化的思想,屬于中考??碱}型.
4.已知關(guān)于x的分式方程 + =1的解是非負(fù)數(shù),則m的取值范圍是( )
A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠3
【考點(diǎn)】B2:分式方程的解.
【分析】分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解表示出x,根據(jù)方程的解為非負(fù)數(shù)求出m的范圍即可.
【解答】解:分式方程去分母得:m﹣3=x﹣1,
解得:x=m﹣2,
由方程的解為非負(fù)數(shù),得到m﹣2≥0,且m﹣2≠1,
解得:m≥2且m≠3.
故選:C
【點(diǎn)評(píng)】此題考查了分式方程的解,時(shí)刻注意分母不為0這個(gè)條件.
5.商店某天銷(xiāo)售了14件襯衫,其領(lǐng)口尺寸統(tǒng)計(jì)如表:
領(lǐng)口尺寸(單位:cm) 38 39 40 41 42
件數(shù) 1 5 3 3 2
則這14件襯衫領(lǐng)口尺寸的眾數(shù)與中位數(shù)分別是( )
A.39cm、39cm B.39cm、39.5cm C.39cm、40cm D.40cm、40cm
【考點(diǎn)】W5:眾數(shù);W4:中位數(shù).
【分析】根據(jù)中位數(shù)的定義與眾數(shù)的定義,結(jié)合圖表信息解答.
【解答】解:同一尺寸最多的是39cm,共有5件,
所以,眾數(shù)是39cm,
14件襯衫按照尺寸從小到大排列,第7,8件的尺寸是40cm,
所以中位數(shù)是40cm.
故選C
【點(diǎn)評(píng)】本題考查了中位數(shù)與眾數(shù),確定中位數(shù)的時(shí)候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個(gè)來(lái)確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個(gè),則正中間的數(shù)字即為所求,如果是偶數(shù)個(gè)則找中間兩位數(shù)的平均數(shù),中位數(shù)有時(shí)不一定是這組數(shù)據(jù)的數(shù);眾數(shù)是出現(xiàn)次數(shù)最多的數(shù)據(jù),眾數(shù)有時(shí)不止一個(gè).
6.如圖,⊙O是△ABC的內(nèi)切圓,切點(diǎn)分別是D、E、F,已知∠A=100°,∠C=30°,則∠DFE的度數(shù)是( )
A.55° B.60° C.65° D.70°
【考點(diǎn)】MI:三角形的內(nèi)切圓與內(nèi)心.
【分析】根據(jù)三角形的內(nèi)角和定理求得∠B=50°,再根據(jù)切線(xiàn)的性質(zhì)以及四邊形的內(nèi)角和定理,得∠DOE=130°,再根據(jù)圓周角定理得∠DFE=65°.
【解答】解:∵∠A=100°,∠C=30°,
∴∠B=50°,
∵∠BDO=∠BEO,
∴∠DOE=130°,
∴∠DFE=65°.
故選C.
【點(diǎn)評(píng)】熟練運(yùn)用三角形的內(nèi)角和定理、四邊形的內(nèi)角和定理以及切線(xiàn)的性質(zhì)定理、圓周角定理.
7.已知m、n是方程x2+3x﹣2=0的兩個(gè)實(shí)數(shù)根,則m2+4m+n+2mn的值為( )
A.1 B.3 C.﹣5 D.﹣9
【考點(diǎn)】AB:根與系數(shù)的關(guān)系.
【分析】根據(jù)根與系數(shù)的關(guān)系以及一元二次方程的解即可得出m+n=﹣3、mn=﹣2、m2+3m=2,將其代入m2+4m+n+2mn中即可求出結(jié)論.
【解答】解:∵m、n是方程x2+3x﹣2=0的兩個(gè)實(shí)數(shù)根,
∴m+n=﹣3,mn=﹣2,m2+3m=2,
∴m2+4m+n+2mn=m2+3m+m+n+2mn=2﹣3﹣2×2=﹣5.
故選C.
【點(diǎn)評(píng)】本題考查了根與系數(shù)的關(guān)系以及一元二次方程的解,熟練掌握x1+x2=﹣ 、x1x2= 是解題的關(guān)鍵.
8.若關(guān)于x的不等式 的整數(shù)解共有4個(gè),則m的取值范圍是( )
A.6
【考點(diǎn)】CC:一元一次不等式組的整數(shù)解.
【分析】首先確定不等式組的解集,先利用含m的式子表示,根據(jù)整數(shù)解的個(gè)數(shù)就可以確定有哪些整數(shù)解,根據(jù)解的情況可以得到關(guān)于m的不等式,從而求出m的范圍.
【解答】解:由(1)得,x
由(2)得,x≥3,
故原不等式組的解集為:3≤x
∵不等式的正整數(shù)解有4個(gè),
∴其整數(shù)解應(yīng)為:3、4、5、6,
∴m的取值范圍是6
故選:D.
【點(diǎn)評(píng)】本題是一道較為抽象的中考題,利用數(shù)軸就能直觀的理解題意,列出關(guān)于m的不等式組,再借助數(shù)軸做出正確的取舍.
9.如圖,AC⊥BC,AC=BC=4,以BC為直徑作半圓,圓心為點(diǎn)O;以點(diǎn)C為圓心,BC為半徑作 ,過(guò)點(diǎn)O作AC的平行線(xiàn)交兩弧于點(diǎn)D、E,則陰影部分的面積是( )
A. B. C.2 D.
【考點(diǎn)】MO:扇形面積的計(jì)算.
【分析】如圖,連接CE.圖中S陰影=S扇形BCE﹣S扇形BOD﹣S△OCE.根據(jù)已知條件易求得OB=OC=OD=2,BC=CE=4.∠ECB=60°,OE=2 所以由扇形面積公式、三角形面積公式進(jìn)行解答即可.
【解答】解:如圖,連接CE.
∵AC⊥BC,AC=BC=4,以BC為直徑作半圓,圓心為點(diǎn)O;以點(diǎn)C為圓心,BC為半徑作弧AB,
∴∠ACB=90°,OB=OC=OD=2,BC=CE=4.
又∵OE∥AC,
∴∠ACB=∠COE=90°.
∴在直角△OEC中,OC=2,CE=4,
∴∠CEO=30°,∠ECB=60°,OE=2
∴S陰影=S扇形BCE﹣S扇形BOD﹣S△OCE= ﹣ π×22﹣ ×2×2 = ﹣2 ,
故選A.
【點(diǎn)評(píng)】本題考查了扇形面積的計(jì)算.不規(guī)則圖形的面積一定要注意分割成規(guī)則圖形的面積進(jìn)行計(jì)算.
10.如圖,已知四邊形ABCD為等腰梯形,AD∥BC,AB=CD,AD= ,E為CD中點(diǎn),連接AE,且AE=2 ,∠DAE=30°,作AE⊥AF交BC于F,則BF=( )
A.1 B.3﹣ C. ﹣1 D.4﹣2
【考點(diǎn)】LJ:等腰梯形的性質(zhì).
【分析】延長(zhǎng)AE交BC的延長(zhǎng)線(xiàn)于G,根據(jù)線(xiàn)段中點(diǎn)的定義可得CE=DE,根據(jù)兩直線(xiàn)平行,內(nèi)錯(cuò)角相等可得到∠DAE=∠G=30°,然后利用“角角邊”證明△ADE和△GCE全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得CG=AD,AE=EG,然后解直角三角形求出AF、GF,過(guò)點(diǎn)A作AM⊥BC于M,過(guò)點(diǎn)D作DN⊥BC于N,根據(jù)等腰梯形的性質(zhì)可得BM=CN,再解直角三角形求出MG,然后求出CN,MF,然后根據(jù)BF=BM﹣MF計(jì)算即可得解.
【解答】解:如圖,延長(zhǎng)AE交BC的延長(zhǎng)線(xiàn)于G,
∵E為CD中點(diǎn),
∴CE=DE,
∵AD∥BC,
∴∠DAE=∠G=30°,
在△ADE和△GCE中,
,
∴△ADE≌△GCE(AAS),
∴CG=AD= ,AE=EG=2 ,
∴AG=AE+EG=2 +2 =4 ,
∵AE⊥AF,
∴AF=AGtan30°=4 × =4,
GF=AG÷cos30°=4 ÷ =8,
過(guò)點(diǎn)A作AM⊥BC于M,過(guò)點(diǎn)D作DN⊥BC于N,
則MN=AD= ,
∵四邊形ABCD為等腰梯形,
∴BM=CN,
∵M(jìn)G=AG•cos30°=4 × =6,
∴CN=MG﹣MN﹣CG=6﹣ ﹣ =6﹣2 ,
∵AF⊥AE,AM⊥BC,
∴∠FAM=∠G=30°,
∴FM=AF•sin30°=4× =2,
∴BF=BM﹣MF=6﹣2 ﹣2=4﹣2 .
故選:D.
【點(diǎn)評(píng)】本題考查了等腰梯形的性質(zhì),解直角三角形,全等三角形的判定與性質(zhì),熟記各性質(zhì)是解題的關(guān)鍵,難點(diǎn)在于作輔助線(xiàn)構(gòu)造出全等三角形,過(guò)上底的兩個(gè)頂點(diǎn)作出梯形的兩條高.
11.如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),OP=5cm,點(diǎn)M和點(diǎn)N分別是射線(xiàn)OA和射線(xiàn)OB上的動(dòng)點(diǎn),△PMN周長(zhǎng)的最小值是5cm,則∠AOB的度數(shù)是( )
A.25° B.30° C.35° D.40°
【考點(diǎn)】PA:軸對(duì)稱(chēng)﹣?zhàn)疃搪肪€(xiàn)問(wèn)題.
【分析】分別作點(diǎn)P關(guān)于OA、OB的對(duì)稱(chēng)點(diǎn)C、D,連接CD,分別交OA、OB于點(diǎn)M、N,連接OC、OD、PM、PN、MN,由對(duì)稱(chēng)的性質(zhì)得出PM=DM,OP=OC,∠COA=∠POA;PN=CN,OP=OD,∠DOB=∠POB,得出∠AOB= ∠COD,證出△OCD是等邊三角形,得出∠COD=60°,即可得出結(jié)果.
【解答】解:分別作點(diǎn)P關(guān)于OA、OB的對(duì)稱(chēng)點(diǎn)C、D,連接CD,
分別交OA、OB于點(diǎn)M、N,連接OC、OD、PM、PN、MN,如圖所示:
∵點(diǎn)P關(guān)于OA的對(duì)稱(chēng)點(diǎn)為D,關(guān)于OB的對(duì)稱(chēng)點(diǎn)為C,
∴PM=DM,OP=OD,∠DOA=∠POA;
∵點(diǎn)P關(guān)于OB的對(duì)稱(chēng)點(diǎn)為C,
∴PN=CN,OP=OC,∠COB=∠POB,
∴OC=OP=OD,∠AOB= ∠COD,
∵△PMN周長(zhǎng)的最小值是5cm,
∴PM+PN+MN=5,
∴DM+CN+MN=5,
即CD=5=OP,
∴OC=OD=CD,
即△OCD是等邊三角形,
∴∠COD=60°,
∴∠AOB=30°;
故選:B.
【點(diǎn)評(píng)】本題考查了軸對(duì)稱(chēng)的性質(zhì)、最短路線(xiàn)問(wèn)題、等邊三角形的判定與性質(zhì);熟練掌握軸對(duì)稱(chēng)的性質(zhì),證明三角形是等邊三角形是解決問(wèn)題的關(guān)鍵.
12.如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y= 在第一象限的圖象經(jīng)過(guò)點(diǎn)B,則△OAC與△BAD的面積之差S△OAC﹣S△BAD為( )
A.36 B.12 C.6 D.3
【考點(diǎn)】G5:反比例函數(shù)系數(shù)k的幾何意義;KW:等腰直角三角形.
【分析】設(shè)△OAC和△BAD的直角邊長(zhǎng)分別為a、b,結(jié)合等腰直角三角形的性質(zhì)及圖象可得出點(diǎn)B的坐標(biāo),根據(jù)三角形的面積公式結(jié)合反比例函數(shù)系數(shù)k的幾何意義以及點(diǎn)B的坐標(biāo)即可得出結(jié)論.
【解答】解:設(shè)△OAC和△BAD的直角邊長(zhǎng)分別為a、b,
則點(diǎn)B的坐標(biāo)為(a+b,a﹣b).
∵點(diǎn)B在反比例函數(shù)y= 的第一象限圖象上,
∴(a+b)×(a﹣b)=a2﹣b2=6.
∴S△OAC﹣S△BAD= a2﹣ b2= (a2﹣b2)= ×6=3.
故選D.
【點(diǎn)評(píng)】本題考查了反比例函數(shù)系數(shù)k的幾何意義、等腰三角形的性質(zhì)以及面積公式,解題的關(guān)鍵是找出a2﹣b2的值.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時(shí),設(shè)出等腰直角三角形的直角邊,用其表示出反比例函數(shù)上點(diǎn)的坐標(biāo)是關(guān)鍵.
13.如圖,已知AB=12,點(diǎn)C,D在AB上,且AC=DB=2,點(diǎn)P從點(diǎn)C沿線(xiàn)段CD向點(diǎn)D運(yùn)動(dòng)(運(yùn)動(dòng)到點(diǎn)D停止),以AP、BP為斜邊在AB的同側(cè)畫(huà)等腰Rt△APE和等腰Rt△PBF,連接EF,取EF的中點(diǎn)G,下列說(shuō)法中正確的有( )
①△EFP的外接圓的圓心為點(diǎn)G;②四邊形AEFB的面積不變;
?、跡F的中點(diǎn)G移動(dòng)的路徑長(zhǎng)為4;④△EFP的面積的最小值為8.
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
【考點(diǎn)】MR:圓的綜合題.
【分析】分別延長(zhǎng)AE、BF交于點(diǎn)H,易證四邊形EPFH為平行四邊形,得出G為PH中點(diǎn),則G的運(yùn)行軌跡為三角形HCD的中位線(xiàn)MN.再求出CD的長(zhǎng),運(yùn)用中位線(xiàn)的性質(zhì)求出MN的長(zhǎng)度即可確定③正確;又由G為EF的中點(diǎn),∠EPF=90°,可知②錯(cuò)誤.根據(jù)直角三角形兩直角邊的差越大,直角三角形的面積越小,可求得答案.
【解答】解:如圖 ,
分別延長(zhǎng)AE、BF交于點(diǎn)H.
∵等腰Rt△APE和等腰Rt△PBF,
∴∠A=∠FPB=45°,∠B=∠EPA=45°,
∴AH∥PF,BH∥PE,∠EPF=180°﹣∠EPA﹣∠FPB=90°,
∴四邊形EPFH為平行四邊形,
∴EF與HP互相平分.
∵G為EF的中點(diǎn),
∴G也為PH中點(diǎn),
即在P的運(yùn)動(dòng)過(guò)程中,G始終為PH的中點(diǎn),
∴G的運(yùn)行軌跡為△HCD的中位線(xiàn)MN.
∵CD=12﹣2﹣2=8,
∴MN=4,即G的移動(dòng)路徑長(zhǎng)為4.
故③EF的中點(diǎn)G移動(dòng)的路徑長(zhǎng)為4,正確;
∵G為EF的中點(diǎn),∠EPF=90°,
∴①△EFP的外接圓的圓心為點(diǎn)G,正確.
∴①③正確.
∵點(diǎn)P從點(diǎn)C沿線(xiàn)段CD向點(diǎn)D運(yùn)動(dòng)(運(yùn)動(dòng)到點(diǎn)D停止),易證∠EPF=90°,所以四邊形面積便是三個(gè)直角三角形的面積和,設(shè)cp=x,則四邊形面積S=
∴AP不斷增大,
∴四邊形的面積S也會(huì)隨之變化,故②錯(cuò)誤.
?、艿妊黂t△APE和等腰Rt△PBF,
∠EPF=90°,
AP= PE,BP= PF,
當(dāng)AP=AC=2時(shí),即PE= ,PF=5 ,
S△PEF最小= PE•PF=5,故④錯(cuò)誤;
故選:B.
【點(diǎn)評(píng)】本題考查了等腰直角三角形的性質(zhì),平行四邊形的判定與性質(zhì),三角形外接圓的知識(shí)以及三角形中位線(xiàn)的性質(zhì)等知識(shí).此題綜合性很強(qiáng),圖形也很復(fù)雜,解題時(shí)要注意數(shù)形結(jié)合思想的應(yīng)用.此題屬于動(dòng)點(diǎn)問(wèn)題,是中考的熱點(diǎn).
14.二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過(guò)點(diǎn)(﹣1,0),對(duì)稱(chēng)軸為直線(xiàn)x=2,下列結(jié)論:(1)2a+b=0;(2)9a+c>3b;(3)5a+7b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣ ,y2)、點(diǎn)C( ,y3)在該函數(shù)圖象上,則y1
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
【考點(diǎn)】HA:拋物線(xiàn)與x軸的交點(diǎn);H4:二次函數(shù)圖象與系數(shù)的關(guān)系.
【分析】(1)根據(jù)拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn)x=﹣ =2,則有4a+b=0;
(2)觀察函數(shù)圖象得到當(dāng)x=﹣3時(shí),函數(shù)值小于0,則9a﹣3b+c<0,即9a+c<3b;
(3)由(1)得b=﹣4a,由圖象過(guò)點(diǎn)(﹣1,0)得:c=﹣5a,代入5a+7b+2c中,根據(jù)a的大小可判斷結(jié)果是正數(shù)還是負(fù)數(shù),
(4)根據(jù)當(dāng)x<2時(shí),y隨x的增大而增大,進(jìn)行判斷;
(5)由(x+1)(x﹣5)<0,由圖象可知:x<﹣1或x>5可得結(jié)論.
【解答】解:(1)﹣ =2,
∴4a+b=0,
所以此選項(xiàng)不正確;
(2)由圖象可知:當(dāng)x=﹣3時(shí),y<0,
即9a﹣3b+c<0,
9a+c<3b,
所以此選項(xiàng)不正確;
(3)∵拋物線(xiàn)開(kāi)口向下,
∴a<0,
∵4a+b=0,
∴b=﹣4a,
把(﹣1,0)代入y=ax2+bx+c得:a﹣b+c=0,
a+4a+c=0,
c=﹣5a,
∴5a+7b+2c=5a﹣7×(﹣4a)+2×(﹣5a)=﹣33a>0,
∴所以此選項(xiàng)正確;
(4)由對(duì)稱(chēng)性得:點(diǎn)C( ,y3)與(0.5,y3)對(duì)稱(chēng),
∵當(dāng)x<2時(shí),y隨x的增大而增大,
且﹣3<﹣ <0.5,
∴ y1
所以此選項(xiàng)正確;
(5)∵a<0,c>0
∴(x+1)(x﹣5)= <0,
即(x+1)(x﹣5)<0,
故x<﹣1或x>5,
所以此選項(xiàng)正確;
∴正確的有三個(gè),
故選C.
【點(diǎn)評(píng)】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:二次函數(shù)y=ax2+bx+c(a≠0),二次項(xiàng)系數(shù)a決定拋物線(xiàn)的開(kāi)口方向和大小,當(dāng)a>0時(shí),拋物線(xiàn)向上開(kāi)口;當(dāng)a<0時(shí),拋物線(xiàn)向下開(kāi)口;常數(shù)項(xiàng)c決定拋物線(xiàn)與y軸交點(diǎn). 拋物線(xiàn)與y軸交于(0,c);拋物線(xiàn)是軸對(duì)稱(chēng)圖形,明確拋物線(xiàn)的增減性與對(duì)稱(chēng)軸有關(guān),并利用數(shù)形結(jié)合的思想綜合解決問(wèn)題.
15.如圖,Rt△ABC中∠C=90°,∠BAC=30°,AB=8,以2 為邊長(zhǎng)的正方形DEFG的一邊GD在直線(xiàn)AB上,且點(diǎn)D與點(diǎn)A重合,現(xiàn)將正方形DEFG沿A﹣B的方向以每秒1個(gè)單位的速度勻速運(yùn)動(dòng),當(dāng)點(diǎn)D與點(diǎn)B重合時(shí)停止,則在這個(gè)運(yùn)動(dòng)過(guò)程中,正方形DEFG與△ABC的重合部分的面積S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系圖象大致是( )
A. B. C. D.
【考點(diǎn)】E7:動(dòng)點(diǎn)問(wèn)題的函數(shù)圖象.
【分析】首先根據(jù)Rt△ABC中∠C=90°,∠BAC=30°,AB=8,分別求出AC、BC,以及AB邊上的高各是多少;然后根據(jù)圖示,分三種情況:(1)當(dāng)0≤t≤2 時(shí);(2)當(dāng)2 時(shí);(3)當(dāng)6
【解答】解:如圖1,CH是AB邊上的高,與AB相交于點(diǎn)H, ,
∵∠C=90°,∠BAC=30°,AB=8,
∴AC=AB×cos30°=8× =4 ,BC=AB×sin30°=8× =4,
∴CH=AC× ,AH= ,
(1)當(dāng)0≤t≤2 時(shí),
S= = t2;
(2)當(dāng)2 時(shí),
S= ﹣
= t2 [t2﹣4 t+12]
=2t﹣2
(3)當(dāng)6
S= [(t﹣2 )•tan30° ]×[6﹣(t﹣2 )] ×[(8﹣t)•tan60° ]×(t﹣6)
= [ ]×[﹣t+2 +6] ×[﹣ t ]×(t﹣6)
=﹣ t2+2t+4 ﹣ t2 ﹣30
=﹣ t2 ﹣26
綜上,可得
S=
∴正方形DEFG與△ABC的重合部分的面積S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系圖象大致是A圖象.
故選:A.
【點(diǎn)評(píng)】(1)此題主要考查了動(dòng)點(diǎn)問(wèn)題的函數(shù)圖象,解答此類(lèi)問(wèn)題的關(guān)鍵是通過(guò)看圖獲取信息,并能解決生活中的實(shí)際問(wèn)題,用圖象解決問(wèn)題時(shí),要理清圖象的含義即學(xué)會(huì)識(shí)圖.
(2)此題還考查了直角三角形的性質(zhì)和應(yīng)用,以及三角形、梯形的面積的求法,要熟練掌握.
二、填空題(本大題共6個(gè)小題,每小題3分,共18分.)
16.分解因式:2x2﹣12x﹣32= 2(x﹣8)(x+2) .
【考點(diǎn)】55:提公因式法與公式法的綜合運(yùn)用.
【分析】原式提取2,再利用十字相乘法分解即可.
>>>下一頁(yè)更多“2017年吉林省中考數(shù)學(xué)練習(xí)試題及答案”