2024年高三T8聯(lián)考第一次數(shù)學試題含答案
親愛的考生們,2024屆高三第一次八省聯(lián)考(T8聯(lián)考)于12月25日-26日進行。下面小編給大家整理了關于2024年高三T8聯(lián)考第一次數(shù)學試題含答案的內(nèi)容,歡迎閱讀,內(nèi)容僅供參考!
2024年高三T8聯(lián)考第一次數(shù)學試題
2024年高三T8聯(lián)考第一次數(shù)學試題參考答案
2024年T8聯(lián)考考試具體哪天考試
2024年T8聯(lián)考考試時間:
日期 | 時間 | 科目 |
2023年12月25日(周一) | 上午9:00-11:30 | 語文 |
下午15:00-17:00 | 數(shù)學 | |
2023年12月26日(周二) | 上午8:00-10:00 | 外語(含聽力) |
上午10:30-11:45 | 物理/歷史 | |
下午14;30-15:45 | 四選二 化學/生物/政治/地理 | |
下午15:55-17:10 |
2024年T8聯(lián)考的最終的成績?nèi)绾?,對于即將高考的學生而言,一定不要有太多的關注,目前最主要的事情就是多多復習試題和可能會備考的知識點,加深對課本上的知識點鞏固,以及老師給到的往年類似高考的模擬測試題,要多做題,保持一個良好的學習心態(tài),盡自己最大的努力去做就行了。
高三數(shù)學公式知識點
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a=tana·tan(π/3+a)·tan(π/3-a)
三倍角公式推導
sin3a
=sin(2a+a)
=sin2acosa+cos2asina
輔助角公式
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
降冪公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
推導公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=(sinα/2+cosα/2)^2
=2sina(1-sin2a)+(1-2sin2a)sina
=3sina-4sin3a
cos3a
=cos(2a+a)
=cos2acosa-sin2asina
=(2cos2a-1)cosa-2(1-sin2a)cosa
=4cos3a-3cosa
sin3a=3sina-4sin3a
=4sina(3/4-sin2a)
=4sina[(√3/2)2-sin2a]
=4sina(sin260°-sin2a)
=4sina(sin60°+sina)(sin60°-sina)
=4sina_2sin[(60+a)/2]cos[(60°-a)/2]_2sin[(60°-a)/2]cos[(60°-a)/2]
=4sinasin(60°+a)sin(60°-a)
cos3a=4cos3a-3cosa
=4cosa(cos2a-3/4)
=4cosa[cos2a-(√3/2)2]
=4cosa(cos2a-cos230°)
=4cosa(cosa+cos30°)(cosa-cos30°)
=4cosa_2cos[(a+30°)/2]cos[(a-30°)/2]_{-2sin[(a+30°)/2]sin[(a-30°)/2]}
=-4cosasin(a+30°)sin(a-30°)
=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
=-4cosacos(60°-a)[-cos(60°+a)]
=4cosacos(60°-a)cos(60°+a)
上述兩式相比可得
tan3a=tanatan(60°-a)tan(60°+a)
半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
sin^2(a/2)=(1-cos(a))/2
cos^2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
三角和
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
兩角和差
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
和差化積
sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]
sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]
cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]
cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
積化和差
sinαsinβ=[cos(α-β)-cos(α+β)]/2
cosαcosβ=[cos(α+β)+cos(α-β)]/2
sinαcosβ=[sin(α+β)+sin(α-β)]/2
cosαsinβ=[sin(α+β)-sin(α-β)]/2
誘導公式
sin(-α)=-sinα
cos(-α)=cosα
tan(—a)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
sin(π-α)=sinα
cos(π-α)=-cosα
sin(π+α)=-sinα
cos(π+α)=-cosα
tanA=sinA/cosA
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
tan(π-α)=-tanα
tan(π+α)=tanα
誘導公式記背訣竅:奇變偶不變,符號看象限
高三數(shù)學知識點總結
1. 對于集合,一定要抓住集合的代表元素,及元素的確定性、互異性、無序性。
2. 中元素各表示什么?
注重借助于數(shù)軸和文氏圖解集合問題。
空集是一切集合的子集,是一切非空集合的真子集。
3. 注意下列性質(zhì):
(3)德摩根定律:
4. 你會用補集思想解決問題嗎?(排除法、間接法)
的取值范圍。
5. 命題的四種形式及其相互關系是什么?
(互為逆否關系的命題是等價命題。)
原命題與逆否命題同真、同假;逆命題與否命題同真同假。
6. 對映射的概念了解嗎?映射f:AB,是否注意到A中元素的任意性和B中與之對應元素的唯一性,哪幾種對應能構成映射?
(一對一,多對一,允許B中有元素無原象。)
7. 函數(shù)的三要素是什么?如何比較兩個函數(shù)是否相同?
(定義域、對應法則、值域)
8. 求函數(shù)的定義域有哪些常見類型?
9. 如何求復合函數(shù)的定義域?
10. 求一個函數(shù)的解析式或一個函數(shù)的反函數(shù)時,注明函數(shù)的定義域了嗎?
11. 反函數(shù)存在的條件是什么?
(一一對應函數(shù))
求反函數(shù)的步驟掌握了嗎?
(①反解x;②互換x、y;③注明定義域)
12. 反函數(shù)的性質(zhì)有哪些?
①互為反函數(shù)的圖象關于直線y=x對稱;
②保存了原來函數(shù)的單調(diào)性、奇函數(shù)性;
13. 如何用定義證明函數(shù)的單調(diào)性?
(取值、作差、判正負)
如何判斷復合函數(shù)的單調(diào)性?)