數學考試答題技巧
數學[英語:mathematics,源自古希臘語μ?θημα(máthēma);經常被縮寫為math或maths],是研究數量、結構、變化、空間以及信息等概念的一門學科。下面是小編為大家整理的數學考試答題技巧,僅供參考,喜歡可以收藏分享一下喲!
數學解題方法
1、剔除法
利用題目給出的已知條件和選項提供的信息,從四個選項中挑選出三個錯誤答案,從而達到正確答案的目的。在答案為定值的時候,這方法是比較常用的,或者利用數值范圍,取特殊點代入驗證答案。
2、特殊值檢驗法
對于具有一般性的選擇題,在答題過程中,可以將問題具體特殊化,利用問題在特殊情況下不真,則利用一般情況下不真這一原理,從而達到去偽存真的目的。
3、順推破解法
利用數學公式、法則、題意、定理和定義,通過直接演算推理得出答案的方法。
4、極端性原則
將所要解答的問題向極端狀態(tài)進行分析,使因果關系變得更加明朗,以達到迅速解決問題的目的。極端性多數應用在取值范圍、解析幾何和求極值上面,很多計算量大、計算步驟繁瑣的題,采用極端性去分析,可以瞬間解決問題。
5、直接法
直接法就是從題設條件出發(fā),通過正確推理、判斷或運算,直接得出結論,從而作出選擇的一種方法。用這種方法的學生往往數學基礎比較扎實。
6、估算法
就是把復雜的問題轉化為簡單的問題,估算出答案的近似值,或者把有關數值縮小或擴大,從而對運算結果作出一個估計或確定出一個范圍,達到作出判斷的效果。
高考數學答題思想方法
高中數學答題方法化歸與轉化思想
(1)將復雜問題化歸為簡單問題,將較難問題化為較易問題,將未解決問題化歸為已解決問題
(2)靈活性、多樣性,無統(tǒng)一模式,利用動態(tài)思維,去尋找有利于問題解決的變換途徑與方法
(3)高考重視常用變換方法:一般與特殊的轉化、繁與簡的轉化、構造轉化、命題的等價轉化
高中數學答題方法特殊與一般思想
(1)通過對個例認識與研究,形成對事物的認識
(2)由淺入深,由現象到本質、由局部到整體、由實踐到理論
(3)由特殊到一般,再由一般到特殊的反復認識過程
(4)構造特殊函數、特殊數列,尋找特殊點、確立特殊位置,利用特殊值、特殊方程
(5) 高考以新增內容為素材,突出考查特殊與一般思想必成為命題改革方向
數學答題技巧
1、夯實基礎,強化通性通法
高考對基礎知識的考查既全面又突出重點。抓基礎就是要重視對教材的復習,尤其是要重視概念、公式、法則、定理的形成過程,運用時注意條件和結論的限制范圍,理解教材中例題的典型作用,對教材中的練習題,不但要會做,還要深刻理解在解決問題時題目所體現的數學思維方法。
2、認真閱讀考試說明,減少無用功
在平時練習或進行模擬考試時,高中英語,要注意培養(yǎng)考試心境,養(yǎng)成良好的習慣。首先認真對考試說明進行領會,并要按要求去做,對照說明后的題例,體會說明對知識點是如何考查的,了解說明對每個知識的要求,千萬不要對知識的要求進行拔高訓練。
3、抓住重點內容,注重能力培養(yǎng)
高中數學主體內容是支撐整個高中數學最重要的部分,也是進入大學必須掌握的內容,這些內容都是每年必考且重點考的。象關于函數(含三角函數)、平面向量、直線和圓錐曲線、線面關系、數列、概率、導數等,把它們作為復習中的重中之重來處理,要一個一個專題去落實,要通過對這些專題的復習向其他知識點輻射。
數學考試答題技巧相關文章:
★ 數學考試技巧方法
★ 高考數學考試技巧