中學(xué)數(shù)學(xué)中的發(fā)散思維培養(yǎng)
時(shí)間:
卜英武 1由 分享
摘要:發(fā)散思維又稱擴(kuò)散思維,它表現(xiàn)為思維視野廣闊。在數(shù)學(xué)教學(xué)中,教師需要培養(yǎng)學(xué)生的發(fā)散思維能力,以提高學(xué)生的解題能力。
關(guān)鍵詞:發(fā)散思維;聯(lián)想;數(shù)學(xué)教學(xué)
所謂發(fā)散思維是在中心問(wèn)題發(fā)散過(guò)程中所產(chǎn)生的新的思維著力點(diǎn)上進(jìn)行進(jìn)一步的發(fā)散和發(fā)現(xiàn)的思維方法。它可以進(jìn)一步開(kāi)闊學(xué)生的視野,讓學(xué)生的思維在更多更高的層次上得到鍛煉。
一、理論依據(jù)
心理學(xué)認(rèn)為,個(gè)體在理解和思維時(shí),要在已有認(rèn)知結(jié)構(gòu)中進(jìn)行搜索,尋找與思維點(diǎn)相關(guān)的材料。若搜索到有關(guān)材料,則思維點(diǎn)便成為了具有具體意義的信息,實(shí)現(xiàn)了信息的轉(zhuǎn)移,完成了思維的過(guò)程;若未搜索到有關(guān)材料,則不能實(shí)現(xiàn)信息的轉(zhuǎn)換,往往會(huì)導(dǎo)致思維點(diǎn)的流失,從而使思維失去意義。由此可以看出已有的認(rèn)知結(jié)構(gòu)和舊知識(shí)在思維過(guò)程中有著十分重要的作用。中心問(wèn)題發(fā)散教學(xué)法便是基于上述的理論,要求教師盡量在解決中心問(wèn)題過(guò)程中誘導(dǎo)學(xué)生的思維著力點(diǎn),給學(xué)生的大腦輸入背景資料,從而為學(xué)生進(jìn)一步的探索與發(fā)現(xiàn)奠定基礎(chǔ),為思維的進(jìn)一步發(fā)散做好準(zhǔn)備。教師如果在教學(xué)的過(guò)程中能夠不斷地啟發(fā)學(xué)生的發(fā)散思維,能從已知信息中尋求大量的新異獨(dú)特的新信息,從不同方面、不同角度去觀察和分析同一事物,從一個(gè)知識(shí)點(diǎn)、一節(jié)內(nèi)容聯(lián)想到其它知識(shí)點(diǎn)、其它章節(jié),甚至其它學(xué)科的內(nèi)容,就能充分地開(kāi)闊學(xué)生的視野,鍛煉他們的思維,開(kāi)發(fā)他們的智力和能力。
二、發(fā)散思維教學(xué)的效果
首先,能夠較好地培養(yǎng)學(xué)生的思維能力和分析、解決問(wèn)題的能力。發(fā)散思維的核心是問(wèn)題發(fā)散,是由此及彼的層遞、比較與分析,是將已有知識(shí)和新知識(shí)的融合,是理論與具體例證的相互印證。所以,學(xué)生的思維在教學(xué)過(guò)程中能夠得到多層面的鍛煉。
其二,可以使教材的知識(shí)點(diǎn)更系統(tǒng)、更符合認(rèn)知規(guī)律,有利于教師完成知識(shí)點(diǎn)間的過(guò)渡和銜接。
其三,可以擴(kuò)大知識(shí)點(diǎn)的范圍,擴(kuò)充教材容量,彌補(bǔ)教材對(duì)知識(shí)點(diǎn)解釋方面的一些欠缺。
其四,能使學(xué)生適時(shí)地對(duì)舊知識(shí)進(jìn)行復(fù)習(xí)和回顧,能很好地為以后要學(xué)的知識(shí)做好鋪墊,并能將新舊知識(shí)串聯(lián)在一起,加強(qiáng)理解和記憶。
由以上說(shuō)明可知,數(shù)學(xué)發(fā)散思維的培養(yǎng)對(duì)數(shù)學(xué)學(xué)習(xí)有重要的作用,因此在教學(xué)中,要加強(qiáng)對(duì)學(xué)生發(fā)散思維的培養(yǎng)。在實(shí)際教學(xué)中可采用以下幾個(gè)方面去培養(yǎng)學(xué)生的發(fā)散思維能力。
三、培養(yǎng)學(xué)生發(fā)散思維的方法
1.營(yíng)造愉悅的氛圍,創(chuàng)設(shè)發(fā)散思維的情景
營(yíng)造愉悅的氛圍,創(chuàng)設(shè)發(fā)散思維的情景,給學(xué)生提供獨(dú)立思考問(wèn)題、自己提問(wèn)題的條件與機(jī)會(huì),為發(fā)散思維的培養(yǎng)創(chuàng)造良好的內(nèi)、外部的環(huán)境。
教師在課堂上要善于創(chuàng)設(shè)思維情景,引導(dǎo)學(xué)生積極思維,運(yùn)用已學(xué)過(guò)的知識(shí)去解決新問(wèn)題。教師應(yīng)給學(xué)生留足空間,尊重學(xué)生的愛(ài)好、個(gè)性和人格,以平等、寬容、友善的態(tài)度對(duì)待學(xué)生,使學(xué)生能夠與教師一起參與教學(xué)活動(dòng),真正做學(xué)習(xí)的主人,形成一種寬松和諧的教育環(huán)境。只有在這種氛圍中,學(xué)生才能充分發(fā)揮自己的聰明才智和創(chuàng)造想象的能力。在創(chuàng)設(shè)思維情境過(guò)程中,筆者發(fā)現(xiàn)組織課堂討論是一種非常有效的方法,課堂討論能培養(yǎng)學(xué)生敢于提問(wèn)題、敢于批判、敢于質(zhì)疑的精神,有利于學(xué)生之間的多向交流,取長(zhǎng)補(bǔ)短。所以,教師應(yīng)有意識(shí)地搞好合作教學(xué),使教師、學(xué)生的角色處于隨時(shí)互換的動(dòng)態(tài)變化中,設(shè)計(jì)集體討論,差缺互補(bǔ),分組操作等內(nèi)容,鍛煉學(xué)生的合作能力。
2.肯定學(xué)生的超常思維,培養(yǎng)發(fā)散思維
獨(dú)特性是指發(fā)散思維的新奇成分。在活動(dòng)過(guò)程中經(jīng)常會(huì)有學(xué)生對(duì)某個(gè)題有超常、獨(dú)特、非邏輯性的見(jiàn)解。對(duì)于學(xué)生中出現(xiàn)的這種情況教師需要及時(shí)肯定,為他們以后的發(fā)散性思維提供良好基礎(chǔ)。
3.適當(dāng)進(jìn)行 “一題多變”、“一法多用”、“一題多解”等教學(xué)活動(dòng),培養(yǎng)學(xué)生的發(fā)散思維
一題多變是通過(guò)題目的引申、變化、發(fā)散,提供問(wèn)題的背景,提示問(wèn)題間的邏輯關(guān)系。新課中,可以以簡(jiǎn)單題入手由淺入深,使大部分學(xué)生對(duì)當(dāng)堂課內(nèi)容產(chǎn)生興趣。在習(xí)題課中,把較難的題改成多變題目,讓學(xué)生找到突破口,對(duì)難題也產(chǎn)生興趣。同時(shí)要讓學(xué)生自己嘗試改變題目中的某一條件,對(duì)知識(shí)進(jìn)行重組,探索出新知識(shí),解決新問(wèn)題,培養(yǎng)學(xué)生多思多變的能力。
4.激勵(lì)學(xué)生“聯(lián)想”、“猜想”,培養(yǎng)學(xué)生的發(fā)散思維能力
數(shù)學(xué)家發(fā)現(xiàn)數(shù)學(xué)規(guī)律的過(guò)程,往往是先有一個(gè)猜想,而后對(duì)猜想進(jìn)行驗(yàn)證或修正的過(guò)程,而猜想又往往是以聯(lián)想為中介的。在新課程標(biāo)準(zhǔn)下,聯(lián)想和猜想的數(shù)學(xué)思維方法在數(shù)學(xué)學(xué)習(xí)中時(shí)常顯現(xiàn),作為現(xiàn)階段的初中數(shù)學(xué)教師,應(yīng)不斷改變教學(xué)模式和方式,加強(qiáng)學(xué)生對(duì)聯(lián)想和猜想的數(shù)學(xué)思維方法的指導(dǎo)。
聯(lián)想是由來(lái)源材料分化多種因素,形成的發(fā)散思維的中間環(huán)節(jié)。善于聯(lián)想,就是善于從不同的方面思考問(wèn)題,對(duì)一類型的題能聯(lián)想到多種方法。例如有些題目,從敘述的事情上看,不是工程問(wèn)題,但題目特點(diǎn)卻與工程題目相同,因此可用工程問(wèn)題的解題思路去分析、解答。又如多邊形內(nèi)角和與外角和定理的學(xué)習(xí)探討,就可以從三角形、四邊形等特殊圖形的內(nèi)角和與外角和定理的探討入手,引導(dǎo)學(xué)生經(jīng)過(guò)一個(gè)頂點(diǎn)畫對(duì)角線,將多邊形分成若干三角形然后再進(jìn)行內(nèi)角和的討論;再?gòu)耐饨桥c相鄰的內(nèi)角的關(guān)系出發(fā)探討外角和,從而得出猜想。在這里,三角形,四邊形的內(nèi)角和與外角和的探討方法便是參照,通過(guò)類比猜想得出正確結(jié)論。這類題目不僅題型新,而且擴(kuò)大了知識(shí)和能力的覆蓋面,通過(guò)題目所提供的結(jié)構(gòu)特征,鼓勵(lì)、引導(dǎo)學(xué)生大膽猜想,充分發(fā)揮想象能力。
總之,發(fā)散思維是多方向性和開(kāi)放性的思維方式,它同單一、刻板和封閉的思維方式相對(duì)立,它承認(rèn)事物的復(fù)雜性、多樣性和生動(dòng)性,在聯(lián)系和發(fā)展中把握事物。發(fā)散性思維仿佛具有眾多條的“觸角”,不拘泥于一個(gè)方向、一個(gè)框架而向四面八方延伸,可使學(xué)生的思維縱橫交錯(cuò),構(gòu)成豐富多彩的、生動(dòng)的“意識(shí)之網(wǎng),而這張網(wǎng)可以迅速、靈活地“編”出多種多樣的”意識(shí)產(chǎn)品。
參考文獻(xiàn):
[1]王雪梅,吳立寶.數(shù)學(xué)中思維定勢(shì)的消極影響及其對(duì)策[J].臨沂師范學(xué)院學(xué)報(bào),2004(6).
[2]高雷阜.創(chuàng)造性思維與創(chuàng)新教育[J].遼寧工程技術(shù)大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版),2000 (3).
[3]劉旭.中學(xué)數(shù)學(xué)解題中思維能力的培養(yǎng)[J].景德鎮(zhèn)高專學(xué)報(bào),2003(2).
Abstract: Divergent thinking is also called diffusion thinking and it is shown as thinking of vision. In mathematics teaching, teachers should cultivate students’ divergent thinking ability so as to cultivate students’ problem-solving ability.
Key words: divergent thinking; association; mathematics teaching
關(guān)鍵詞:發(fā)散思維;聯(lián)想;數(shù)學(xué)教學(xué)
所謂發(fā)散思維是在中心問(wèn)題發(fā)散過(guò)程中所產(chǎn)生的新的思維著力點(diǎn)上進(jìn)行進(jìn)一步的發(fā)散和發(fā)現(xiàn)的思維方法。它可以進(jìn)一步開(kāi)闊學(xué)生的視野,讓學(xué)生的思維在更多更高的層次上得到鍛煉。
一、理論依據(jù)
心理學(xué)認(rèn)為,個(gè)體在理解和思維時(shí),要在已有認(rèn)知結(jié)構(gòu)中進(jìn)行搜索,尋找與思維點(diǎn)相關(guān)的材料。若搜索到有關(guān)材料,則思維點(diǎn)便成為了具有具體意義的信息,實(shí)現(xiàn)了信息的轉(zhuǎn)移,完成了思維的過(guò)程;若未搜索到有關(guān)材料,則不能實(shí)現(xiàn)信息的轉(zhuǎn)換,往往會(huì)導(dǎo)致思維點(diǎn)的流失,從而使思維失去意義。由此可以看出已有的認(rèn)知結(jié)構(gòu)和舊知識(shí)在思維過(guò)程中有著十分重要的作用。中心問(wèn)題發(fā)散教學(xué)法便是基于上述的理論,要求教師盡量在解決中心問(wèn)題過(guò)程中誘導(dǎo)學(xué)生的思維著力點(diǎn),給學(xué)生的大腦輸入背景資料,從而為學(xué)生進(jìn)一步的探索與發(fā)現(xiàn)奠定基礎(chǔ),為思維的進(jìn)一步發(fā)散做好準(zhǔn)備。教師如果在教學(xué)的過(guò)程中能夠不斷地啟發(fā)學(xué)生的發(fā)散思維,能從已知信息中尋求大量的新異獨(dú)特的新信息,從不同方面、不同角度去觀察和分析同一事物,從一個(gè)知識(shí)點(diǎn)、一節(jié)內(nèi)容聯(lián)想到其它知識(shí)點(diǎn)、其它章節(jié),甚至其它學(xué)科的內(nèi)容,就能充分地開(kāi)闊學(xué)生的視野,鍛煉他們的思維,開(kāi)發(fā)他們的智力和能力。
二、發(fā)散思維教學(xué)的效果
首先,能夠較好地培養(yǎng)學(xué)生的思維能力和分析、解決問(wèn)題的能力。發(fā)散思維的核心是問(wèn)題發(fā)散,是由此及彼的層遞、比較與分析,是將已有知識(shí)和新知識(shí)的融合,是理論與具體例證的相互印證。所以,學(xué)生的思維在教學(xué)過(guò)程中能夠得到多層面的鍛煉。
其二,可以使教材的知識(shí)點(diǎn)更系統(tǒng)、更符合認(rèn)知規(guī)律,有利于教師完成知識(shí)點(diǎn)間的過(guò)渡和銜接。
其三,可以擴(kuò)大知識(shí)點(diǎn)的范圍,擴(kuò)充教材容量,彌補(bǔ)教材對(duì)知識(shí)點(diǎn)解釋方面的一些欠缺。
其四,能使學(xué)生適時(shí)地對(duì)舊知識(shí)進(jìn)行復(fù)習(xí)和回顧,能很好地為以后要學(xué)的知識(shí)做好鋪墊,并能將新舊知識(shí)串聯(lián)在一起,加強(qiáng)理解和記憶。
由以上說(shuō)明可知,數(shù)學(xué)發(fā)散思維的培養(yǎng)對(duì)數(shù)學(xué)學(xué)習(xí)有重要的作用,因此在教學(xué)中,要加強(qiáng)對(duì)學(xué)生發(fā)散思維的培養(yǎng)。在實(shí)際教學(xué)中可采用以下幾個(gè)方面去培養(yǎng)學(xué)生的發(fā)散思維能力。
三、培養(yǎng)學(xué)生發(fā)散思維的方法
1.營(yíng)造愉悅的氛圍,創(chuàng)設(shè)發(fā)散思維的情景
營(yíng)造愉悅的氛圍,創(chuàng)設(shè)發(fā)散思維的情景,給學(xué)生提供獨(dú)立思考問(wèn)題、自己提問(wèn)題的條件與機(jī)會(huì),為發(fā)散思維的培養(yǎng)創(chuàng)造良好的內(nèi)、外部的環(huán)境。
教師在課堂上要善于創(chuàng)設(shè)思維情景,引導(dǎo)學(xué)生積極思維,運(yùn)用已學(xué)過(guò)的知識(shí)去解決新問(wèn)題。教師應(yīng)給學(xué)生留足空間,尊重學(xué)生的愛(ài)好、個(gè)性和人格,以平等、寬容、友善的態(tài)度對(duì)待學(xué)生,使學(xué)生能夠與教師一起參與教學(xué)活動(dòng),真正做學(xué)習(xí)的主人,形成一種寬松和諧的教育環(huán)境。只有在這種氛圍中,學(xué)生才能充分發(fā)揮自己的聰明才智和創(chuàng)造想象的能力。在創(chuàng)設(shè)思維情境過(guò)程中,筆者發(fā)現(xiàn)組織課堂討論是一種非常有效的方法,課堂討論能培養(yǎng)學(xué)生敢于提問(wèn)題、敢于批判、敢于質(zhì)疑的精神,有利于學(xué)生之間的多向交流,取長(zhǎng)補(bǔ)短。所以,教師應(yīng)有意識(shí)地搞好合作教學(xué),使教師、學(xué)生的角色處于隨時(shí)互換的動(dòng)態(tài)變化中,設(shè)計(jì)集體討論,差缺互補(bǔ),分組操作等內(nèi)容,鍛煉學(xué)生的合作能力。
2.肯定學(xué)生的超常思維,培養(yǎng)發(fā)散思維
獨(dú)特性是指發(fā)散思維的新奇成分。在活動(dòng)過(guò)程中經(jīng)常會(huì)有學(xué)生對(duì)某個(gè)題有超常、獨(dú)特、非邏輯性的見(jiàn)解。對(duì)于學(xué)生中出現(xiàn)的這種情況教師需要及時(shí)肯定,為他們以后的發(fā)散性思維提供良好基礎(chǔ)。
3.適當(dāng)進(jìn)行 “一題多變”、“一法多用”、“一題多解”等教學(xué)活動(dòng),培養(yǎng)學(xué)生的發(fā)散思維
一題多變是通過(guò)題目的引申、變化、發(fā)散,提供問(wèn)題的背景,提示問(wèn)題間的邏輯關(guān)系。新課中,可以以簡(jiǎn)單題入手由淺入深,使大部分學(xué)生對(duì)當(dāng)堂課內(nèi)容產(chǎn)生興趣。在習(xí)題課中,把較難的題改成多變題目,讓學(xué)生找到突破口,對(duì)難題也產(chǎn)生興趣。同時(shí)要讓學(xué)生自己嘗試改變題目中的某一條件,對(duì)知識(shí)進(jìn)行重組,探索出新知識(shí),解決新問(wèn)題,培養(yǎng)學(xué)生多思多變的能力。
4.激勵(lì)學(xué)生“聯(lián)想”、“猜想”,培養(yǎng)學(xué)生的發(fā)散思維能力
數(shù)學(xué)家發(fā)現(xiàn)數(shù)學(xué)規(guī)律的過(guò)程,往往是先有一個(gè)猜想,而后對(duì)猜想進(jìn)行驗(yàn)證或修正的過(guò)程,而猜想又往往是以聯(lián)想為中介的。在新課程標(biāo)準(zhǔn)下,聯(lián)想和猜想的數(shù)學(xué)思維方法在數(shù)學(xué)學(xué)習(xí)中時(shí)常顯現(xiàn),作為現(xiàn)階段的初中數(shù)學(xué)教師,應(yīng)不斷改變教學(xué)模式和方式,加強(qiáng)學(xué)生對(duì)聯(lián)想和猜想的數(shù)學(xué)思維方法的指導(dǎo)。
聯(lián)想是由來(lái)源材料分化多種因素,形成的發(fā)散思維的中間環(huán)節(jié)。善于聯(lián)想,就是善于從不同的方面思考問(wèn)題,對(duì)一類型的題能聯(lián)想到多種方法。例如有些題目,從敘述的事情上看,不是工程問(wèn)題,但題目特點(diǎn)卻與工程題目相同,因此可用工程問(wèn)題的解題思路去分析、解答。又如多邊形內(nèi)角和與外角和定理的學(xué)習(xí)探討,就可以從三角形、四邊形等特殊圖形的內(nèi)角和與外角和定理的探討入手,引導(dǎo)學(xué)生經(jīng)過(guò)一個(gè)頂點(diǎn)畫對(duì)角線,將多邊形分成若干三角形然后再進(jìn)行內(nèi)角和的討論;再?gòu)耐饨桥c相鄰的內(nèi)角的關(guān)系出發(fā)探討外角和,從而得出猜想。在這里,三角形,四邊形的內(nèi)角和與外角和的探討方法便是參照,通過(guò)類比猜想得出正確結(jié)論。這類題目不僅題型新,而且擴(kuò)大了知識(shí)和能力的覆蓋面,通過(guò)題目所提供的結(jié)構(gòu)特征,鼓勵(lì)、引導(dǎo)學(xué)生大膽猜想,充分發(fā)揮想象能力。
總之,發(fā)散思維是多方向性和開(kāi)放性的思維方式,它同單一、刻板和封閉的思維方式相對(duì)立,它承認(rèn)事物的復(fù)雜性、多樣性和生動(dòng)性,在聯(lián)系和發(fā)展中把握事物。發(fā)散性思維仿佛具有眾多條的“觸角”,不拘泥于一個(gè)方向、一個(gè)框架而向四面八方延伸,可使學(xué)生的思維縱橫交錯(cuò),構(gòu)成豐富多彩的、生動(dòng)的“意識(shí)之網(wǎng),而這張網(wǎng)可以迅速、靈活地“編”出多種多樣的”意識(shí)產(chǎn)品。
參考文獻(xiàn):
[1]王雪梅,吳立寶.數(shù)學(xué)中思維定勢(shì)的消極影響及其對(duì)策[J].臨沂師范學(xué)院學(xué)報(bào),2004(6).
[2]高雷阜.創(chuàng)造性思維與創(chuàng)新教育[J].遼寧工程技術(shù)大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版),2000 (3).
[3]劉旭.中學(xué)數(shù)學(xué)解題中思維能力的培養(yǎng)[J].景德鎮(zhèn)高專學(xué)報(bào),2003(2).
Abstract: Divergent thinking is also called diffusion thinking and it is shown as thinking of vision. In mathematics teaching, teachers should cultivate students’ divergent thinking ability so as to cultivate students’ problem-solving ability.
Key words: divergent thinking; association; mathematics teaching