快速原型開發(fā)技術(shù)論文(2)
快速原型開發(fā)技術(shù)論文
快速原型開發(fā)技術(shù)論文篇二
快速原型與鑄造技術(shù)的集成成形制造
摘要:RP技術(shù)與鑄造工藝集成產(chǎn)生的快速零件/模具制造技術(shù)是鑄造技術(shù)、CAD技術(shù)、RP技術(shù)、CAE技術(shù)、CAM技術(shù)的集成,能夠為快速制造小批量、單件模具/零件提供廣闊的發(fā)展前景。文章闡述了典型的快速原型技術(shù),并從CAD模型直接驅(qū)動鑄型成形的金屬零件/模具制造和CAD模型間接驅(qū)動鑄型成形的金屬零件/模具制造兩方面探討了RP與鑄造工藝集成。
關(guān)鍵詞:快速原型;鑄造技術(shù);集成成形制造;CAD技術(shù);RP技術(shù);CAE技術(shù) 文獻標識碼:A
中圖分類號:TG249 文章編號:1009-2374(2016)10-0072-02 DOI:10.13535/j.cnki.11-4406/n.2016.10.035
1 概述
快速原型技術(shù)(RP技術(shù))綜合了材料技術(shù)、激光技術(shù)、機械工程技術(shù)、數(shù)控技術(shù)、CAD技術(shù)等學科技術(shù),能夠精確、自動、快速、直接地將CAD模型直接制造出模具/零件,不再需要耗資、費時地進行機械加工、工具設(shè)計、模具設(shè)計,能夠使產(chǎn)品的研發(fā)周期得以大幅度縮短,進而提高制造的柔性度和生產(chǎn)效率。從目前來看,機械行業(yè)通常都是利用機械加工方法來制造壓型、模樣、芯盒、模板等,甚至有時還需要技術(shù)熟練的鉗工來幫助修整,特別是汽車缸體、飛機發(fā)動機葉片、汽車缸蓋、船用螺旋槳等造型復雜的薄壁鑄件更加難以制造。快速原型與鑄造技術(shù)的集成成形制造為快速制造小批量、單件模具/零件提供了廣闊的發(fā)展前景。本文就快速原型與鑄造技術(shù)的集成成形制造進行探討。
2 典型的快速原型技術(shù)
從目前來看,3DP、SL、SLS、FDM、LOM等技術(shù)都是全球應用較為成熟的快速成形工藝,這些工藝可分為兩大類,分別是基于微滴的數(shù)字噴射成形工藝和基于激光的快速成形工藝。基于微滴的數(shù)字噴射成形工藝是指利用微滴技術(shù)來將黏結(jié)劑微滴化黏結(jié)成形或者將成形材料微滴化堆積成形,而基于激光的快速成形工藝是指利用激光技術(shù)來黏結(jié)、分離、固化、熔化可成形的材料。
2.1 典型的激光快速成形工藝
(1)DLF工藝(直接光成形工藝)――DLF工藝是一種直接金屬型成形工藝,對金屬粉末進行選擇性燒結(jié),而后再將其逐層疊加堆積成形,燒結(jié)所用能源為高能激光;(2)SL工藝(立體光刻工藝)――SL工藝利用紫外光或者紫外激光來固化樹脂,并且使之堆積成形;(3)SGC工藝(實體輪廓固化工藝)――SGC工藝利用紫外激光來固化樹脂,并且使之堆積成形,所利用的技術(shù)為掩膜版技術(shù);(4)LENS工藝(激光近凈成形工藝)――LENS工藝對金屬粉末進行選擇性燒結(jié),而后再將其逐層疊加堆積成形,燒結(jié)所用能源為高能激光;(5)LOM工藝(分層實體制造工藝)――LOM工藝對金屬板材、紙材等箔材利用激光切割方法來進行選擇性燒結(jié),并且將其逐層疊加堆積成形;(6)SLS工藝(選擇性激光燒結(jié)工藝)――SLS工藝對樹脂砂、金屬粉末、塑料粉、蠟粉等粉末材料利用CO2激光來進行選擇性燒結(jié),并且將其逐層疊加堆積成形。
2.2 典型的微滴數(shù)字噴射成形工藝
(1)3DP工藝(三維印刷工藝)――3DP工藝從噴頭中噴出黏結(jié)劑來將粉末材料予以黏結(jié),并且將其逐層疊加堆積成形;(2)EFF工藝(自由擠出制造工藝)――EFF工藝對多種不同材料的混合比例進行實時調(diào)節(jié),并且利用連續(xù)微滴技術(shù)來使之逐步堆積為梯度材料零件;(3)SDM工藝(沉積成形制造工藝)――SDM工藝是一種將熔融金屬微滴堆積成形與切削去除成形相結(jié)合的直接金屬型成形工藝;(4)PCM工藝(無模鑄型制造工藝)――PCM工藝在砂層上不斷噴射黏結(jié)劑,黏結(jié)型砂堆積成形;(5)3DW工藝(三維焊接工藝)――3DW工藝將金屬絲線利用堆焊原理來進行堆積成形;(6)MJS工藝(多噴頭噴射成形工藝)――MJS工藝將熔融材料利用活塞擠壓方式來使之擠出噴嘴,再通過連續(xù)微滴技術(shù)來使之形成絲材堆積成形;(7)BPM工藝(彈道粒子制造工藝)――BPM工藝對熔融材料利用噴頭噴射的方式來予以堆積成形,值得注意的是,所采用的噴頭具有五軸自由度;(8)UDS工藝(均勻微滴噴射工藝)――UDS工藝對熔融材料利用電磁場控制的方式來予以堆積成形;(9)FDM工藝(熔融沉積制造工藝)――FDM工藝在噴頭內(nèi)加熱尼龍、蠟、塑料等材料,并且利用細微的噴管來予以連續(xù)微滴噴出,使之形成絲材堆積成形;(10)CC工藝(輪廓成形)――CC工藝采用熔融材料澆鑄和輪廓堆積結(jié)合的方式來予以堆積成形。
3 RP與鑄造工藝集成
RP技術(shù)與鑄造工藝集成產(chǎn)生的快速零件/模具制造技術(shù),是鑄造技術(shù)、CAD技術(shù)、RP技術(shù)、CAE技術(shù)、CAM技術(shù)等的集成,具有較高的技術(shù)集成度,能夠在短時間之內(nèi)將CAD模型轉(zhuǎn)換為物理實體模型,能夠有效地降低生產(chǎn)成本和制造周期。值得注意的是,利用這種工藝流程所制造出來的模具/零件的尺寸精度會受到較多因素的影響,其中最為主要的影響因素為金屬在鑄造過程中的收縮率。為了能夠讓成形金屬模具/零件的精度更高,需要對金屬的收縮率予以準確的確定。本文通過對鑄件凝固過程進行數(shù)值分析,進而優(yōu)化鑄造工藝參數(shù)以滿足零件/模具尺寸精度的技術(shù)要求。
從目前來看,國內(nèi)關(guān)于鑄件凝固過程的數(shù)值模擬工作主要是鑄件應力場分析、鑄件溫度場分析以及預測鑄件在凝固過程的熱裂、縮松、縮孔等一系列缺陷,但仍然鮮有研究凝固過程中鑄件尺寸精度的數(shù)值模擬。鑄件應力場和鑄件溫度場在鑄造凝固過程中通常都屬于相互影響的狀態(tài),鑄造凝固過程分析屬于典型的熱力耦合范疇,過去很多的研究都對熱力耦合求解問題予以了簡化,也沒有考慮應力變形做功所造成的溫度變化,并且對耦合分析計算時間予以了縮短,這種簡化方式并不會影響到鑄件應力場分析、鑄件溫度場分析以及計算鑄件在凝固過程的熱裂、縮松、縮孔情況,但是會對鑄件尺寸精度造成影響。
將有限元模擬技術(shù)與CAD數(shù)據(jù)予以有機地結(jié)合,能夠定性模擬模具/零件尺寸變化的凝固,也能夠?qū)δ>?零件在凝固過程中尺寸變化規(guī)律予以有效地預測,逐步實現(xiàn)優(yōu)化CAD模型的目的。與此同時,還能夠?qū)⒕荑T造、RP原型等工藝轉(zhuǎn)換時所出現(xiàn)的尺寸誤差能夠在三維CAD建模時予以補償,進而實現(xiàn)誤差數(shù)據(jù)的補償和反饋。此外,還能夠有機地集成材料技術(shù)、激光技術(shù)、有限元模擬技術(shù)、RP技術(shù)、CAD技術(shù)等來快速制造金屬模具、金屬零件。由于是利用計算機控制來實現(xiàn)原型成型過程,所以都是通過計算機技術(shù)來完成相關(guān)的生產(chǎn)過程、設(shè)計過程,并且能夠?qū)崿F(xiàn)高品質(zhì)原型部件的快速制造。與其他制造工藝不同,快速原型與鑄造技術(shù)的集成成形制造能夠利用計算機技術(shù)實時修改CAD模型來補償尺寸收縮、尺寸精度控制、幾何變形等尺寸誤差,以此來確保所制造出來的零件/模具均為高品質(zhì)的。 3.1 CAD模型直接驅(qū)動鑄型成形的金屬零件/模具制造
CAD可在不需要芯盒或者模樣的情況下來直接驅(qū)動制造鑄型,所選用的型殼造型材料都是各個制造企業(yè)鑄造車間所通用的材料,零件模型在CAD環(huán)境下能夠被直接轉(zhuǎn)換為鑄型。非零件部分在成形過程中需要黏結(jié)或者燒結(jié),而零件部分在成形過程中依然是粉末。在完成了成形工序之后傾倒出粉末,即可開始對砂型、砂芯進行直接制造,這樣一來,能夠不再向過去傳統(tǒng)精密鑄造一樣需要制作大量的泡沫塑料模、蠟型,有效地節(jié)約了時間和成本費用,尤其是對于復雜零件、小批量零件的生產(chǎn)極為有效。目前主要的工藝有直接殼型鑄造DSPC、SLS砂型燒結(jié)和PCM無木模成形工藝。這些工藝能夠?qū)崿F(xiàn)一體化制造砂芯和鑄型,也不會存在著砂芯和鑄型二者之間的裝配關(guān)系,特別適合復雜零件、小批量零件的生產(chǎn)。
CAD模型直接驅(qū)動鑄型成形的金屬模具/零件制造包括了冒口三維數(shù)字模型、澆口三維數(shù)字模型等,首先,能夠模擬金屬凝固的收縮率;其次,能夠?qū)AD模型進行優(yōu)化修改;再次,能夠分層模型,能夠?qū)焖僭蜋C予以驅(qū)動,使得鑄型可被直接制造出來;最后,利用焙燒鑄型等后續(xù)工藝技術(shù)處理后,就能夠?qū)饘俸辖鹩枰詽茶T,制造出金屬模具/零件。
3.2 CAD模型間接驅(qū)動鑄型成形的金屬零件/模具制造
首先,將金屬模具/零件的三維CAD模型設(shè)計出來,并且還需要一起設(shè)計出冒口、澆口,以便能夠更好地模擬金屬收縮率的凝固過程;其次,對金屬收縮率的凝固過程用MARC軟件來予以模擬試驗,并且對零件與鑄型之間的工藝參數(shù)和邊界條件進行優(yōu)化,以便能夠更好地確定出金屬的收縮率,特別是能夠?qū)崿F(xiàn)實時跟蹤關(guān)鍵尺寸,進而有效地保障了最終設(shè)計出來的金屬模具/零件的尺寸精度;最后,對CAD模型進行優(yōu)化,并且用來驅(qū)動制造出所需要的鑄造用模樣和快速原型。
有機地結(jié)合鑄造技術(shù)和快速原形技術(shù),能夠?qū)崿F(xiàn)小批量試制金屬零件的低成本、快速制造。利用BMP工藝、FDM工藝、SGC工藝、SLS工藝能夠直接CAD驅(qū)動制造蠟模原型,并且將其應用于熔模鑄造工藝中。例如:基于FDM原型快速制造金屬模具/零件,將熔模鑄造中的蠟模用FDM原型來予以代替,并且將耐火漿料直接涂掛在FDM模上;當固化耐火漿料之后,再將FDM原型予以培燒除去,待其只余下鑄造用型殼之后進行鑄注,特別適合應用于中小型、復雜程度居中的金屬零件/模具制造生產(chǎn)。
快速原型技術(shù)(RP技術(shù))也能夠與陶瓷型鑄造、石膏型鑄造、砂型鑄造等進行直接結(jié)合,制造出具有高機械強度、高硬度的金屬零件/模具,而且所制造出來的原型具有高耐用性,變形、收縮小,不會出現(xiàn)翹曲現(xiàn)象,內(nèi)部應力小。
4 結(jié)語
總之,快速原型與鑄造技術(shù)的集成成形制造能夠最大化地發(fā)揮出鑄造技術(shù)和快速成型技術(shù)的優(yōu)點,能夠?qū)θ毕萦枰灶A先消除,成本低、制造速度快,能夠?qū)碗s零件予以快速制造,值得推廣應用。
參考文獻
[1] 聞天佑,等.快速成型技術(shù)及其在鑄造中的應用[J].鑄造,1995,22(2).
[2] 姜不居,等.快速金屬模具制造[J].特種金屬及有色合金,1999,23(1).
[3] 顏永年,等.基于RP的早期、多回路反饋模具快速制造系統(tǒng)[J].中國機械工程,1999,10(9).
作者簡介:王恩祿(1972-),男,黑龍江佳木斯人,佳木斯大學液壓件廠高級工程師,研究方向:金屬成型。
看了“快速原型開發(fā)技術(shù)論文”的人還看: