国产成人v爽在线免播放观看,日韩欧美色,久久99国产精品久久99软件,亚洲综合色网站,国产欧美日韩中文久久,色99在线,亚洲伦理一区二区

學習啦 > > 高一數(shù)學優(yōu)秀教案

高一數(shù)學優(yōu)秀教案

時間: 康華0 分享

高一數(shù)學優(yōu)秀教案6篇

遵守職業(yè)道德,認真?zhèn)湔n、教學,盡最大努力去為學生呈現(xiàn)更好的教學效果和課程體驗。下面是小編為大家整理的高一數(shù)學優(yōu)秀教案,如果大家喜歡可以分享給身邊的朋友。

高一數(shù)學優(yōu)秀教案

高一數(shù)學優(yōu)秀教案(精選篇1)

教學目標

掌握等差數(shù)列與等比數(shù)列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,并能運用這些知識解決一些基本問題。

教學重難點

掌握等差數(shù)列與等比數(shù)列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,并能運用這些知識解決一些基本問題。

教學過程

等比數(shù)列性質請同學們類比得出。

【方法規(guī)律】

1、通項公式與前n項和公式聯(lián)系著五個基本量,“知三求二”是一類最基本的運算題。方程觀點是解決這類問題的基本數(shù)學思想和方法。

2、判斷一個數(shù)列是等差數(shù)列或等比數(shù)列,常用的方法使用定義。特別地,在判斷三個實數(shù)a,b,c成等差(比)數(shù)列時,常用(注:若為等比數(shù)列,則a,b,c均不為0)

3、在求等差數(shù)列前n項和的(小)值時,常用函數(shù)的思想和方法加以解決。

【示范舉例】

例1:(1)設等差數(shù)列的前n項和為30,前2n項和為100,則前3n項和為。

(2)一個等比數(shù)列的前三項之和為26,前六項之和為728,則a1=,q=。

例2:四數(shù)中前三個數(shù)成等比數(shù)列,后三個數(shù)成等差數(shù)列,首末兩項之和為21,中間兩項之和為18,求此四個數(shù)。

例3:項數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項之和為44,偶數(shù)項之和為33,求該數(shù)列的中間項。

高一數(shù)學優(yōu)秀教案(精選篇2)

學習重點:了解弧度制,并能進行弧度與角度的換算

學習難點:弧度的概念及其與角度的關系。

學習目標

①了解弧度制,能進行弧度與角度的換算。

②認識弧長公式,能進行簡單應用。對弧長公式只要求了解,會進行簡單應用,不必在應用方面加深。

③了解角的集合與實數(shù)集建立了一一對應關系,培養(yǎng)學生學會用函數(shù)的觀點分析、解決問題。

教學過程

一、自主學習

1、長度等于半徑長的圓弧所對的圓心角叫做1弧度角,記作1,或1弧度,或1(單位可以省略不寫)。這種度量角的單位制稱為。

2、正角的弧度數(shù)是數(shù),負角的弧度數(shù)是數(shù),零角的弧度數(shù)是。

3、角的弧度數(shù)的絕對值。(為弧長,為半徑)

4:完成特殊角的度數(shù)與弧度數(shù)的對應表。

角度030456090120

弧度

角度135150180210225240

弧度

角度270300315330360

弧度

5、扇形面積公式:。

二、師生互動

例1把化成弧度。

變式:把化成度。

小結:在具體運算時,弧度二字和單位符號rad可省略,如:3表示3rad,sin表示rad角的正弦。

例2用弧度制表示:

(1)終邊在軸上的角的集合;

(2)終邊在軸上的角的集合。

變式:終邊在坐標軸上的角的集合。

例3、知扇形的周長為8,圓心角為2rad,,求該扇形的面積。

三、鞏固練習

1、若=—3,則角的終邊在()。

A、第一象限B、第二象限

C、第三象限D、第四象限

2、半徑為2的圓的圓心角所對弧長為6,則其圓心角為。

四、課后反思

五、課后鞏固練習

1、用弧度制表示終邊在下列位置的角的集合:

(1)直線y=x;(2)第二象限。

2、圓弧長度等于截其圓的內(nèi)接正三角形邊長,求其圓心角的弧度數(shù),并化為度表示。

高一數(shù)學優(yōu)秀教案(精選篇3)

一、教學目標:

掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的問題。

二、教學重點:

向量的性質及相關知識的綜合應用。

三、教學過程:

(一)主要知識:

1、掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的問題。

(二)例題分析:略

四、小結:

1、進一步熟練有關向量的運算和證明;能運用解三角形的知識解決有關應用問題,

2、滲透數(shù)學建模的思想,切實培養(yǎng)分析和解決問題的能力。

高一數(shù)學優(yōu)秀教案(精選篇4)

教學類型:

探究研究型

設計思路:

通過一系列的猜想得出德.摩根律,但是這個結論僅僅是猜想,數(shù)學是一門科學,所以需要論證它的正確性,因此本節(jié)通過剖析維恩圖的四部分來驗證猜想的正確性,并對德摩根律進行簡單的應用,因此我們制作了本微課.

教學過程:

一、片頭

內(nèi)容:現(xiàn)在讓我們一起來學習《集合的運算——自己探索也能發(fā)現(xiàn)的'數(shù)學規(guī)律(第二講)》。

二、正文講解

1.引入:牛頓曾說過:“沒有大膽的猜測,就做不出偉大的發(fā)現(xiàn)?!?/p>

上節(jié)課老師和大家學習了集合的運算,得出了一個有趣的規(guī)律。課后,你舉例驗證了這個規(guī)律嗎?

那么,這個規(guī)律是偶然的,還是一個恒等式呢?

2.規(guī)律的驗證:

試用集合A,B的交集、并集、補集分別表示維恩圖中1,2,3,4及彩色部分的集合,通過剖析維恩圖來驗證猜想的正確性使用

3.抽象概括:通過我們的觀察和驗證,我們發(fā)現(xiàn)這個規(guī)律是一個恒等式。

而這個規(guī)律就是180年前的英國數(shù)學家德摩根發(fā)現(xiàn)的。

為了紀念他,我們將它稱為德摩根律。

原來我們通過自己的探索也能發(fā)現(xiàn)這么偉大的數(shù)學規(guī)律。

4.例題應用:使用例題形式,將的德摩根定律的結論加以應用,讓學生更加熟悉集合的運算

三、結尾

通過這在道題的解答,我們發(fā)現(xiàn)德摩根律為解答集合運算問題提供了更為簡便的方法。

希望你在今后的學習中,勇于探索,發(fā)現(xiàn)更多有趣的規(guī)律。

高一數(shù)學優(yōu)秀教案(精選篇5)

【考點闡述】

兩角和與差的正弦、余弦、正切.二倍角的正弦、余弦、正切.

【考試 要求】

(3)掌握兩角和與兩角差的正弦、余弦、正切公式;掌握二 倍角的正弦、余弦、正切公式.

(4)能正確運用三角公式,進行簡單三角函數(shù)式的化簡、求值和恒等式證明.

【考題分類】

(一)選擇題(共5題)

1.(海南寧夏卷理7) =( )

A. B. C. 2 D.

解: ,選C。

2.(山東卷 理5文10)已知cos(α- )+sinα=

(A)- (B) (C)- (D)

解: , ,

3.(四川卷理3文4) ( )

(A) (B) (C) (D)

【解】:∵

故選D;

【點評】:此題重點考察各三角函數(shù)的關系;

4.(浙江卷理8)若 則 =( )

(A) (B)2 (C) (D)

解析:本小題主要考查三角 函數(shù)的求值問題。由 可知, 兩邊同時除以 得 平方得 ,解得 或用觀察法.

5.(四川延考理5)已知 ,則 ( )

(A) (B) (C) (D)

解: ,選C

(二)填空題(共2題)

1.(浙江卷文12)若 ,則 _________。

解析:本 小題主要考查誘導公式及二倍角公式的應用。由 可知, ;而 。答案 :

2.(上海春卷6)化簡: .

(三)解答題(共1題)

1.(上海春卷17)已知 ,求 的 值.

[解] 原式 …… 2分

. …… 5分

又 , , …… 9分

. …… 12分 文章

高一數(shù)學優(yōu)秀教案(精選篇6)

教學準備

教學目標

知識目標

等差數(shù)列定義等差數(shù)列通項公式

能力目標

掌握等差

數(shù)列定義等差數(shù)列通項公式

情感目標

培養(yǎng)學生的觀察、推理、歸納能力

教學重難點

教學重點

等差數(shù)列的概念的理解與掌握

等差數(shù)列通項公式推導及應用教學難點等差數(shù)列“等差”的理解、把握和應用

教學過程

由__《紅高粱》主題曲“酒神曲”引入等差數(shù)列定義

問題:多媒體演示,觀察——發(fā)現(xiàn)

一、等差數(shù)列定義:

一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列。這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。

例1:觀察下面數(shù)列是否是等差數(shù)列:…。

二、等差數(shù)列通項公式:

已知等差數(shù)列{an}的首項是a1,公差是d。

則由定義可得:

a2—a1=d

a3—a2=d

a4—a3=d

an—an—1=d

即可得:

an=a1+(n—1)d

例2已知等差數(shù)列的首項a1是3,公差d是2,求它的通項公式。

分析:知道a1,d,求an。代入通項公式

解:∵a1=3,d=2

∴an=a1+(n—1)d

=3+(n—1)×2

=2n+1

例3求等差數(shù)列10,8,6,4…的第20項。

分析:根據(jù)a1=10,d=—2,先求出通項公式an,再求出a20

解:∵a1=10,d=8—10=—2,n=20

由an=a1+(n—1)d得

∴a20=a1+(n—1)d

=10+(20—1)×(—2)

=—28

例4:在等差數(shù)列{an}中,已知a6=12,a18=36,求通項an。

分析:此題已知a6=12,n=6;a18=36,n=18分別代入通項公式an=a1+(n—1)d中,可得兩個方程,都含a1與d兩個未知數(shù)組成方程組,可解出a1與d。

解:由題意可得

a1+5d=12

a1+17d=36

∴d=2a1=2

∴an=2+(n—1)×2=2n

練習

1。判斷下列數(shù)列是否為等差數(shù)列:

①23,25,26,27,28,29,30;

②0,0,0,0,0,0,…

③52,50,48,46,44,42,40,35;

④—1,—8,—15,—22,—29;

答案:①不是②是①不是②是

等差數(shù)列{an}的前三項依次為a—6,—3a—5,—10a—1,則a等于()

A、1 B、—1 C、—1/3 D、5/11

提示:(—3a—5)—(a—6)=(—10a—1)—(—3a—5)

3、在數(shù)列{an}中a1=1,an=an+1+4,則a10=。

提示:d=an+1—an=—4

教師繼續(xù)提出問題

已知數(shù)列{an}前n項和為……

1991120