2023高中數(shù)學(xué)必考知識(shí)點(diǎn)
2023年高中數(shù)學(xué)必考知識(shí)點(diǎn)
掌握數(shù)學(xué)知識(shí)可以提高人們的科學(xué)素養(yǎng),更好地理解自然和世界的運(yùn)行規(guī)律。下面是小編為大家?guī)淼?/span>2023高中數(shù)學(xué)必考知識(shí)點(diǎn),希望大家能夠喜歡!快來看看吧!
解析幾何
1.在用點(diǎn)斜式、斜截式求直線的方程時(shí),你是否注意到不存在的情況?
2.用到角公式時(shí),易將直線l1、l2的斜率k1、k2的順序弄顛倒。
3.直線的傾斜角、到的角、與的夾角的取值范圍依次是。
4. 定比分點(diǎn)的坐標(biāo)公式是什么?(起點(diǎn),中點(diǎn),分點(diǎn)以及值可要搞清),在利用定比分點(diǎn)解題時(shí),你注意到了嗎?
5. 對(duì)不重合的兩條直線
(建議在解題時(shí),討論后利用斜率和截距)
6. 直線在兩坐標(biāo)軸上的截距相等,直線方程可以理解為,但不要忘記當(dāng)時(shí),直線在兩坐標(biāo)軸上的截距都是0,亦為截距相等。
7.解決線性規(guī)劃問題的基本步驟是什么?請(qǐng)你注意解題格式和完整的文字表達(dá)。
①設(shè)出變量,寫出目標(biāo)函數(shù)
②寫出線性約束條件
③畫出可行域
④作出目標(biāo)函數(shù)對(duì)應(yīng)的系列平行線,找到并求出最優(yōu)解
8.三種圓錐曲線的定義、圖形、標(biāo)準(zhǔn)方程、幾何性質(zhì),橢圓與雙曲線中的兩個(gè)特征三角形你掌握了嗎?
9.圓、和橢圓的參數(shù)方程是怎樣的?常用參數(shù)方程的方法解決哪一些問題?
10.利用圓錐曲線第二定義解題時(shí),你是否注意到定義中的定比前后項(xiàng)的順序?如何利用第二定義推出圓錐曲線的焦半徑公式?如何應(yīng)用焦半徑公式?
11. 通徑是拋物線的所有焦點(diǎn)弦中最短的弦。(想一想在雙曲線中的結(jié)論?)
12. 在用圓錐曲線與直線聯(lián)立求解時(shí),消元后得到的方程中要注意:二次項(xiàng)的系數(shù)是否為零?橢圓,雙曲線二次項(xiàng)系數(shù)為零時(shí)直線與其只有一個(gè)交點(diǎn),判別式的限制。(求交點(diǎn),弦長,中點(diǎn),斜率,對(duì)稱,存在性問題都在下進(jìn)行).
13.解析幾何問題的求解中,平面幾何知識(shí)利用了嗎?題目中是否已經(jīng)有坐標(biāo)系了,是否需要建立直角坐標(biāo)系?
簡單隨機(jī)抽樣的`特點(diǎn):
(1)用簡單隨機(jī)抽樣從含有N個(gè)個(gè)體的總體中抽取一個(gè)容量為n的樣本時(shí),每次抽取一個(gè)個(gè)體時(shí)任一個(gè)體被抽到的概率為__;在整個(gè)抽樣過程中各個(gè)個(gè)體被抽到的概率為__。
(2)簡單隨機(jī)抽樣的特點(diǎn)是,逐個(gè)抽取,且各個(gè)個(gè)體被抽到的概率相等。
(3)簡單隨機(jī)抽樣方法,體現(xiàn)了抽樣的客觀性與公平性,是其他更復(fù)雜抽樣方法的基礎(chǔ)。
(4)簡單隨機(jī)抽樣是不放回抽樣;它是逐個(gè)地進(jìn)行抽取;它是一種等概率抽樣。
數(shù)列的定義
按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個(gè)數(shù)都叫做數(shù)列的項(xiàng).
(1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.
(2)在數(shù)列的定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個(gè)相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1,….
(4)數(shù)列的項(xiàng)與它的項(xiàng)數(shù)是不同的,數(shù)列的項(xiàng)是指這個(gè)數(shù)列中的某一個(gè)確定的數(shù),是一個(gè)函數(shù)值,也就是相當(dāng)于f(n),而項(xiàng)數(shù)是指這個(gè)數(shù)在數(shù)列中的位置序號(hào),它是自變量的值,相當(dāng)于f(n)中的n.
(5)次序?qū)τ跀?shù)列來講是十分重要的,有幾個(gè)相同的數(shù),由于它們的排列次序不同,構(gòu)成的數(shù)列就不是一個(gè)相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別.如:2,3,4,5,6這5個(gè)數(shù)按不同的次序排列時(shí),就會(huì)得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個(gè)集合.
立體幾何
1.你掌握了空間圖形在平面上的直觀畫法嗎?(斜二測(cè)畫法)。
2.線面平行和面面平行的定義、判定和性質(zhì)定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯(lián)系和轉(zhuǎn)化在解決立幾問題中的應(yīng)用是怎樣的?每種平行之間轉(zhuǎn)換的條件是什么?
3.三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關(guān)鍵是什么嗎?(一面、四線、三垂直、立柱即面的垂線是關(guān)鍵)一面四直線,立柱是關(guān)鍵,垂直三處見
4.線面平行的判定定理和性質(zhì)定理在應(yīng)用時(shí)都是三個(gè)條件,但這三個(gè)條件易混為一談;面面平行的判定定理易把條件錯(cuò)誤地記為”一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面內(nèi)的兩條相交直線分別平行”而導(dǎo)致證明過程跨步太大。
5.求兩條異面直線所成的角、直線與平面所成的角和二面角時(shí),如果所求的角為90°,那么就不要忘了還有一種求角的方法即用證明它們垂直的方法。
6.異面直線所成角利用“平移法”求解時(shí),一定要注意平移后所得角等于所求角(或其補(bǔ)角),特別是題目告訴異面直線所成角,應(yīng)用時(shí)一定要從題意出發(fā),是用銳角還是其補(bǔ)角,還是兩種情況都有可能。
7.你知道公式:和中每一字母的意思嗎?能夠熟練地應(yīng)用它們解題嗎?
8. 兩條異面直線所成的角的范圍:0°<α≤90°< p="">
直線與平面所成的角的范圍:0o≤α≤90°
數(shù)列的分類
(1)根據(jù)數(shù)列的項(xiàng)數(shù)多少可以對(duì)數(shù)列進(jìn)行分類,分為有窮數(shù)列和無窮數(shù)列.在寫數(shù)列時(shí),對(duì)于有窮數(shù)列,要把末項(xiàng)寫出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數(shù)列.
(2)按照項(xiàng)與項(xiàng)之間的大小關(guān)系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動(dòng)數(shù)列、常數(shù)列.