高中數(shù)學知識點總結(jié)
2024高中數(shù)學知識點總結(jié)
數(shù)學訓練了我們的邏輯思考能力,從理解基本原理到推導復雜的定理都離不開合理的推理和證明過程。下面是小編為大家?guī)淼?/span>高中數(shù)學知識點總結(jié),希望大家能夠喜歡!快來看看吧!
高中數(shù)學知識點總結(jié)
一、求導數(shù)的方法
(1)基本求導公式
(2)導數(shù)的四則運算
(3)復合函數(shù)的導數(shù)
設在點x處可導,y=在點處可導,則復合函數(shù)在點x處可導,且即
二、關(guān)于極限
1、數(shù)列的極限:
粗略地說,就是當數(shù)列的項n無限增大時,數(shù)列的項無限趨向于A,這就是數(shù)列極限的描述性定義。記作:=A。如:
2、函數(shù)的極限:
當自變量x無限趨近于常數(shù)時,如果函數(shù)無限趨近于一個常數(shù),就說當x趨近于時,函數(shù)的極限是,記作
三、導數(shù)的概念
1、在處的導數(shù)。
2、在的導數(shù)。
3。函數(shù)在點處的'導數(shù)的幾何意義:
函數(shù)在點處的導數(shù)是曲線在處的切線的斜率,
即k=,相應的切線方程是
注:函數(shù)的導函數(shù)在時的函數(shù)值,就是在處的導數(shù)。
例、若=2,則=()A—1B—2C1D
四、導數(shù)的綜合運用
(一)曲線的切線
函數(shù)y=f(x)在點處的導數(shù),就是曲線y=(x)在點處的切線的斜率。由此,可以利用導數(shù)求曲線的切線方程。具體求法分兩步:
(1)求出函數(shù)y=f(x)在點處的導數(shù),即曲線y=f(x)在點處的切線的斜率k=
(2)在已知切點坐標和切線斜率的條件下,求得切線方程為x。
集合與函數(shù)
1.進行集合的交、并、補運算時,不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進行求解。
2.在應用條件時,易A忽略是空集的情況
3.你會用補集的思想解決有關(guān)問題嗎?
4.簡單命題與復合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?
5.你知道“否命題”與“命題的否定形式”的區(qū)別。
6.求解與函數(shù)有關(guān)的問題易忽略定義域優(yōu)先的原則。
7.判斷函數(shù)奇偶性時,易忽略檢驗函數(shù)定義域是否關(guān)于原點對稱。
8.求一個函數(shù)的解析式和一個函數(shù)的反函數(shù)時,易忽略標注該函數(shù)的定義域。
9.原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào)。例如:。
10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值, 作差, 判正負)和導數(shù)法
11. 求函數(shù)單調(diào)性時,易錯誤地在多個單調(diào)區(qū)間之間添加符號“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示。
12.求函數(shù)的值域必須先求函數(shù)的定義域。
13.如何應用函數(shù)的單調(diào)性與奇偶性解題?
①比較函數(shù)值的大小;
②解抽象函數(shù)不等式;
③求參數(shù)的范圍(恒成立問題).這幾種基本應用你掌握了嗎?
14.解對數(shù)函數(shù)問題時,你注意到真數(shù)與底數(shù)的限制條件了嗎?
(真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論
15.三個二次(哪三個二次?)的關(guān)系及應用掌握了嗎?如何利用二次函數(shù)求最值?
16.用換元法解題時易忽略換元前后的等價性,易忽略參數(shù)的范圍。
17.“實系數(shù)一元二次方程有實數(shù)解”轉(zhuǎn)化時,你是否注意到:當時,“方程有解”不能轉(zhuǎn)化為。若原題中沒有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項系數(shù)可能為的零的情形?
求函數(shù)的單調(diào)性:
利用導數(shù)求函數(shù)單調(diào)性的基本方法:設函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導,(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù).
利用導數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間.
反過來,也可以利用導數(shù)由函數(shù)的單調(diào)性解決相關(guān)問題(如確定參數(shù)的取值范圍):設函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導,
(1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);
(2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的'x值不構(gòu)成區(qū)間);
(3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立.
求函數(shù)的單調(diào)性
利用導數(shù)求函數(shù)單調(diào)性的基本方法:設函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導,(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù).
利用導數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間.
反過來,也可以利用導數(shù)由函數(shù)的單調(diào)性解決相關(guān)問題(如確定參數(shù)的取值范圍):設函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導,
(1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);
(2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的'x值不構(gòu)成區(qū)間);
(3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立.
數(shù)列題
1、證明一個數(shù)列是等差(等比)數(shù)列時,最后下結(jié)論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數(shù)列;
2、最后一問證明不等式成立時,如果一端是常數(shù),另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學歸納法(用數(shù)學歸納法時,當n=k+1時,一定利用上n=k時的假設,否則不正確。利用上假設后,如何把當前的式子轉(zhuǎn)化到目標式子,一般進行適當?shù)姆趴s,這一點是有難度的。簡潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結(jié)論時一定寫上綜上:由①②得證;
3、證明不等式時,有時構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡單