八年級上冊數(shù)學(xué)直角三角形三邊的關(guān)系考試卷及答案
不愛做八年級數(shù)學(xué)單元試卷的學(xué)生不是好學(xué)生。下面小編給大家分享一些八年級上冊數(shù)學(xué)直角三角形三邊的關(guān)系考試卷,大家快來跟小編一起看看吧。
八年級上冊數(shù)學(xué)直角三角形三邊的關(guān)系試題
1.如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,點(diǎn)A,B都是格點(diǎn),則線段AB的長度為( )
A.5 B.6 C.7 D.25
2.在Rt△ABC中,斜邊BC=8 cm,則AB2+BC2+AC2等于( )
A.64 cm2 B.96 cm2 C.128 cm2 D.144 cm2
3.在Rt△ABC中,∠C=90°,∠A,∠B,∠C的對邊分別為a,b,c,
(1)若a=3 cm,c=5 cm,則b=________;
(2)若a=5 cm,b=12 cm,則c=________;
(3)若a∶b=3∶4,c=10 cm,則a=________,b=________.
4.如圖,在等腰△ABC中,AB=AC,AD是底邊上的高,若AB=5 cm,BC=6 cm,則AD=________cm.
5.如圖,三個正方形中的兩個的面積S1=25,S2=144,則另一個的面積S3為________.
6.求出下列直角三角形中未知邊AB的長度.
7.如圖,在Rt△ABC中,∠C=90°,AB=15 cm,則兩個正方形面積的和為( )
A.150 cm2 B.200 cm2 C.225 cm2 D.350 cm2
8.如圖,矩形ABCD的對角線AC=10,BC=8,則圖中五個小矩形的周長之和為( )
A.14 B.16 C.20 D.28
9.如圖,學(xué)校有一塊長方形花圃,有極少數(shù)人為了避開拐角走“捷徑”,在花圃內(nèi)走出了一條“路”.他們僅僅少走了________步路(假設(shè)2步為1米),卻踩傷了花草.
10.如圖,有兩棵樹,一棵高8米,另一棵高2米,兩樹相距8米,一只小鳥從一棵樹的樹梢飛到另一棵樹的樹梢,則它至少要飛行________米.
11.如圖,正方形網(wǎng)格中,每個小正方形的邊長為1,則網(wǎng)格上的△ABC中,邊長為無理數(shù)的邊數(shù)有( )
A.0條 B.1條 C.2條 D.3條
12.如圖,如果半圓的直徑恰為直角三角形的一條直角邊,那么半圓的面積為( )
A.4π cm2 B.6π cm2
C.12π cm2 D.24π cm2
13.如圖,點(diǎn)E在正方形ABCD內(nèi),滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是( )
A.48 B.60 C.76 D.80
14.用四個邊長均為a,b,c的直角三角板,拼成如圖中所示的圖形,則下列結(jié)論中正確的是( )
A.c2=a2+b2 B.c2=a2+2ab+b2
C.c2=a2-2ab+b2 D.c2=(a+b)2
15.如圖,在Rt△ABC中,∠B=90°,沿AD折疊,使點(diǎn)B落在斜邊AC上,若AB=3,BC=4,則BD=________.
16.如圖,在銳角△ABC中,高AD=12,邊AC=13,BC=14,求AB的長.
17.如圖,在Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.
(1)求DE的長;
(2)求△ADB的面積.
18.如圖,折疊長方形的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處,且AB=8 cm,BC=10 cm,求EC的長.
19.一架云梯長25米,如圖斜靠在一面墻上,梯子底端離墻7米.
(1)這個梯子的頂端距地面有多高?
(2)如果梯子的頂端下滑了4米,
那么梯子的底部在水平方向也滑動了4米嗎?
八年級上冊數(shù)學(xué)直角三角形三邊的關(guān)系考試卷參考答案
1. A
2. C
3. (1) 4cm (2) 13cm (3) 6cm 8cm
4. 4
5. 169
6. (1)AB=16
(2)AB=25
7. C
8. D
9. 4
10. 10
11. C
12. B
13. C
14. A
15. 32
16. 在Rt△ADC中,CD=AC2-AD2=132-122=5,∴BD=BC-CD=14-5=9,∴AB=AD2+BD2=122+92=15
17. (1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3
(2)在Rt△ABC中,由勾股定理得:AB=AC2+BC2=62+82=10,∴△ADB的面積為S△ADB=12AB•DE=12×10×3=15
18. ∵D,F(xiàn)關(guān)于AE對稱,∴△AFE≌△ADE,∴AF=AD=BC=10,DE=EF,設(shè)EC=x,則DE=8-x,在Rt△ABF中,BF=AF2-AB2=[JP]6,∴FC=BC-BF=4,在Rt△CEF中,EF2=EC2+FC2,∴(8-x)2=x2+42,解得x=3,
即EC的長為3 cm
19. (1)設(shè)這個梯子的頂端距地面有x米高,據(jù)題意得AB2+BC2=AC2,即x2+72=252,解得x=24.
即這個梯子的頂端距地面有24米高
(2)如果梯子的頂端下滑了4米,即AD=4米,BD=20米,設(shè)梯子底端離墻距離為y米,據(jù)題意得BD2+BE2=DE2,即202+y2=252,解得y=15,此時CE=15-7=8,即梯子的底部在水平方向滑動了8米
看了“八年級上冊數(shù)學(xué)直角三角形三邊的關(guān)系考試卷”的人還看了: