人教版八年級(jí)上數(shù)學(xué)期末試卷(2)
人教版八年級(jí)上數(shù)學(xué)期末試卷
在△ABD和△ACE中, ,
∴△ABD≌△ACE(SAS),
故答案為:BD=CE.
【點(diǎn)評(píng)】本題考查了全等三角形的判定的應(yīng)用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,題目比較好,難度適中.
15.已知分式 ,當(dāng)x=2時(shí),分式無(wú)意義,則a= 6 ;當(dāng)a為a<6的一個(gè)整數(shù)時(shí),使分式無(wú)意義的x的值共有 2 個(gè).
【考點(diǎn)】分式有意義的條件;根與系數(shù)的關(guān)系.
【專(zhuān)題】計(jì)算題.
【分析】根據(jù)分式無(wú)意義的條件:分母等于零求解.
【解答】解:由題意,知當(dāng)x=2時(shí),分式無(wú)意義,
∴分母=x2﹣5x+a=22﹣5×2+a=﹣6+a=0,
∴a=6;
當(dāng)x2﹣5x+a=0時(shí),△=52﹣4a=25﹣4a,
∵a<6,
∴△=25﹣4a>0,
故當(dāng)a<6的整數(shù)時(shí),分式方程有兩個(gè)不相等的實(shí)數(shù)根,
即使分式無(wú)意義的x的值共有2個(gè).
故答案為6,2.
【點(diǎn)評(píng)】本題主要考查了分式無(wú)意義的條件及一元二次方程根的判別式.(2)中要求當(dāng)a<6時(shí),使分式無(wú)意義的x的值的個(gè)數(shù),就是判別當(dāng)a<6時(shí),一元二次方程x2﹣5x+a=0的根的情況.
16.如果一個(gè)多邊形的內(nèi)角和為1260°,那么這個(gè)多邊形的一個(gè)頂點(diǎn)有 6 條對(duì)角線.
【考點(diǎn)】多邊形內(nèi)角與外角;多邊形的對(duì)角線.
【分析】首先根據(jù)多邊形內(nèi)角和公式可得多邊形的邊數(shù),再計(jì)算出對(duì)角線的條數(shù).
【解答】解:設(shè)此多邊形的邊數(shù)為x,由題意得:
(x﹣2)×180=1260,
解得;x=9,
從這個(gè)多邊形的一個(gè)頂點(diǎn)出發(fā)所畫(huà)的對(duì)角線條數(shù):9﹣3=6,
故答案為:6.
【點(diǎn)評(píng)】此題主要考查了多邊形的內(nèi)角和計(jì)算公式求多邊形的邊數(shù),關(guān)鍵是掌握多邊形的內(nèi)角和公式180(n﹣2).
17.如圖,△ABC中,∠C=90°,∠BAC的平分線交BC于點(diǎn)D,若CD=3,則點(diǎn)D到AB的距離是 3 .
【考點(diǎn)】角平分線的性質(zhì).
【分析】作DE⊥AB于E,根據(jù)角平分線的性質(zhì)得到答案.
【解答】解:作DE⊥AB于E,
∵AD是∠BAC的平分線,∠C=90°,DE⊥AB,
∴DE=CD=3,
故答案為:3.
【點(diǎn)評(píng)】本題考查的是角平分線的性質(zhì),掌握角的平分線上的點(diǎn)到角的兩邊的距離相等是解題的關(guān)鍵.
18.關(guān)于x的方程 的解是正數(shù),則a的取值范圍是 a<﹣1且a≠﹣2 .
【考點(diǎn)】分式方程的解.
【分析】先去分母得2x+a=x﹣1,可解得x=﹣a﹣1,由于關(guān)于x的方程 的解是正數(shù),則x>0并且x﹣1≠0,即﹣a﹣1>0且﹣a﹣1≠1,解得a<﹣1且a≠﹣2.
【解答】解:去分母得2x+a=x﹣1,
解得x=﹣a﹣1,
∵關(guān)于x的方程 的解是正數(shù),
∴x>0且x≠1,
∴﹣a﹣1>0且﹣a﹣1≠1,解得a<﹣1且a≠﹣2,
∴a的取值范圍是a<﹣1且a≠﹣2.
故答案為:a<﹣1且a≠﹣2.
【點(diǎn)評(píng)】本題考查了分式方程的解:先把分式方程化為整式方程,解整式方程,若整式方程的解使分式方程左右兩邊成立,那么這個(gè)解就是分式方程的解;若整式方程的解使分式方程左右兩邊不成立,那么這個(gè)解就是分式方程的增根.
19.計(jì)算: = .
【考點(diǎn)】分式的混合運(yùn)算.
【專(zhuān)題】計(jì)算題.
【分析】根據(jù)分式的減法和除法可以解答本題.
【解答】解:
=
=
= ,
故答案為: .
【點(diǎn)評(píng)】本題考查分式的混合運(yùn)算,解題的關(guān)鍵是明確分式的混合運(yùn)算的計(jì)算方法.
20.已知x為正整數(shù),當(dāng)時(shí)x= 3,4,5,8 時(shí),分式 的值為負(fù)整數(shù).
【考點(diǎn)】分式的值.
【分析】由分式 的值為負(fù)整數(shù),可得2﹣x<0,解得x>2,又因?yàn)閤為正整數(shù),代入特殊值驗(yàn)證,易得x的值為3,4,5,8.
【解答】解:由題意得:2﹣x<0,解得x>2,又因?yàn)閤為正整數(shù),討論如下:
當(dāng)x=3時(shí), =﹣6,符合題意;
當(dāng)x=4時(shí), =﹣3,符合題意;
當(dāng)x=5時(shí), =﹣2,符合題意;
當(dāng)x=6時(shí), =﹣ ,不符合題意,舍去;
當(dāng)x=7時(shí), =﹣ ,不符合題意,舍去;
當(dāng)x=8時(shí), =﹣1,符合題意;
當(dāng)x≥9時(shí),﹣1< <0,不符合題意.故x的值為3,4,5,8.
故答案為3、4、5、8.
【點(diǎn)評(píng)】本題綜合性較強(qiáng),既考查了分式的符號(hào),又考查了分類(lèi)討論思想,注意在討論過(guò)程中要做到不重不漏.
三、計(jì)算題(題型注釋)
21.計(jì)算:
(1)﹣22+30﹣(﹣ )﹣1
(2)(﹣2a)3﹣(﹣a)•(3a)2
(3)(2a﹣3b)2﹣4a(a﹣2b)
(4)(m﹣2n+3)(m+2n﹣3).
【考點(diǎn)】整式的混合運(yùn)算.
【專(zhuān)題】計(jì)算題.
【分析】(1)原式第一項(xiàng)利用乘方的意義化簡(jiǎn),第二項(xiàng)利用零指數(shù)冪法則計(jì)算,最后一項(xiàng)利用負(fù)指數(shù)冪法則計(jì)算即可得到結(jié)果;
(2)原式利用積的乘方及冪的乘方 運(yùn)算法則計(jì)算,合并即可得到結(jié)果;
(3)原式第一項(xiàng)利用完全平方公式展開(kāi),第二項(xiàng)利用單項(xiàng)式乘以多項(xiàng)式法則計(jì)算,去括號(hào)合并即可得到結(jié)果;
(4)原式利用平方差公式化簡(jiǎn),再利用完全平方公式展開(kāi),計(jì)算即可得到結(jié)果.
【解答】解:(1)原式=﹣4+1﹣(﹣2)=﹣4+1+2=﹣1;
(2)原式=﹣8a3+9a3=a3;
(3)原式=4a2﹣12ab+9b2﹣4a2+8ab=﹣4ab+9b2;
(4)原式=m2﹣(2n﹣3)2=m2﹣4n2+12n﹣9.
【點(diǎn)評(píng)】此題考查了整式的混合運(yùn)算,以及實(shí)數(shù)的運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.
22.解方程: .
【考點(diǎn)】解分式方程.
【專(zhuān)題】計(jì)算題.
【分析】分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗(yàn)即可得到分式方程的解.
【解答】解:去分母得:5(x﹣1)﹣(x+3)=0,
去括號(hào)得:5x﹣5﹣x﹣3=0,
解得:x=2,
經(jīng)檢驗(yàn)x=2是分式方程的解.
【點(diǎn)評(píng)】此題考查了解分式方程,解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解.解分式方程一定注意要驗(yàn)根.
23.先化簡(jiǎn),再求值: ,其中x=2,y=﹣1.
【考點(diǎn)】分式的化簡(jiǎn)求值.
【分析】首先對(duì)分式進(jìn)行化簡(jiǎn),把分式化為最簡(jiǎn)分式,然后把x、y的值代入即可.
【解答】解:
=
= •
= ,
當(dāng)x=2,y=﹣1時(shí),原式= = .
【點(diǎn)評(píng)】本題主要考查分式的化簡(jiǎn)、分式的四則混合運(yùn)算、分式的性質(zhì),解題關(guān)鍵在于把分式化為最簡(jiǎn)分式.
四、解答題(題型注釋)
24.化簡(jiǎn)求值:
(1) ,其中a=﹣ ,b=1
(2) ,其中x滿足x2﹣2x﹣3=0.
【考點(diǎn)】分式的化簡(jiǎn)求值.
【專(zhuān)題】計(jì)算題.
【分析】(1)原式第二項(xiàng)利用除法法則變形,約分后兩項(xiàng)通分并利用同分母分式的減法法則計(jì)算得到最簡(jiǎn)結(jié)果,把a(bǔ)與b的值代入計(jì)算即可求出值;
(2)原式括號(hào)中兩項(xiàng)通分并利用同分母分式的減法法則計(jì)算,同時(shí)利用除法法則變形,約分得到最簡(jiǎn)結(jié)果,把已知等式變形后代入計(jì)算即可求出值.
【解答】解:(1)原式=1﹣ • =1﹣ = = ,
當(dāng)a=﹣ ,b=1時(shí),原式=4;
(2)原式= •(x﹣1)=x2﹣2x﹣1,
由x2﹣2x﹣3=0,得到x2﹣2x=3,
則原式=3﹣1=2.
【點(diǎn)評(píng)】此題考查了分式的化簡(jiǎn)求值,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.
25.某超市用3000元購(gòu)進(jìn)某種干果銷(xiāo)售,由于銷(xiāo)售狀況良好,超市又調(diào)撥9000元資金購(gòu)進(jìn)該種干果,但這次的進(jìn)價(jià)比第一次的進(jìn)價(jià)提高了20%,購(gòu)進(jìn)干果數(shù)量是第一次的2倍還多300千克,求該種干果的第一次進(jìn)價(jià)是每千克多少元?
【考點(diǎn)】分式方程的應(yīng)用.
【分析】設(shè)該種干果的第一次進(jìn)價(jià)是每千克x元,則第二次進(jìn)價(jià)是每千克(1+20%)x元.根據(jù)第二次購(gòu)進(jìn)干果數(shù)量是第一次的2倍還多300千克,列出方程,解方程即可求解.
【解答】解:設(shè)該種干果的第一次進(jìn)價(jià)是每千克x元,則第二次進(jìn)價(jià)是每千克(1+20%)x元,
由題意,得 =2× +300,
解得x=5,
經(jīng)檢驗(yàn)x=5是方程的解.
答:該種干果的第一次進(jìn)價(jià)是每千克5元.
【點(diǎn)評(píng)】本題考查分式方程的應(yīng)用,分析題意,找到關(guān)鍵描述語(yǔ),找到合適的等量關(guān)系是解決問(wèn)題的關(guān)鍵.
26.如圖,已知∠BAC=∠BCA,∠BAE=∠BCD=90°,BE=BD.求證:∠E=∠D.
【考點(diǎn)】全等三角形的判定與性質(zhì).
【專(zhuān)題】證明題.
【分析】先由等角對(duì)等邊得出AB=CB,再由HL證明Rt△EAB≌Rt△DCB,得出對(duì)應(yīng)角相等即可.
【解答】證明:在△ABC中,∵∠BAC=∠BCA,
∴AB=CB,
∵∠BAE=∠BCD=90°,
在Rt△EAB和Rt△DCB中,
,
∴Rt△EAB≌Rt△DCB(HL),
∴∠E=∠D.
【點(diǎn)評(píng)】本題考查了等腰三角形的判定、全等三角形的判定與性質(zhì);熟練掌握全等三角形的判定與性質(zhì),證明三角形全等是解決問(wèn)題的關(guān)鍵.
27.己知:如圖,E、F分別是▱ABCD的AD、BC邊上的點(diǎn),且AE=CF.
(1)求證:△ABE≌△CDF;
(2)若M、N分別是BE、DF的中點(diǎn),連接MF、EN,試判斷四邊形MFNE是怎樣的四邊形,并證明你的結(jié)論.
【考點(diǎn)】全等三角形的判定;平行四邊形的判定.
【專(zhuān)題】幾何綜合題.
【分析】(1)根據(jù)平行四邊形的性質(zhì)和全等三角形的判定,在△ABE和△CDF中,很容易確定SAS,即證結(jié)論;
(2)在已知條件中求證全等三角形,即△ABE≌△CDF,△MBF≌△NDE,得兩對(duì)邊分別對(duì)應(yīng)相等,根據(jù)平行四邊形的判定,即證.
【解答】證明:(1)∵▱ABCD中,AB=CD,∠A=∠C,
又∵AE=CF,
∴△ABE≌△CDF;
(2)四邊形MFNE平行四邊形.
由(1)知△ABE≌△CDF,
∴BE=DF,∠ABE=∠CDF,
又∵M(jìn)E=BM= BE,NF=DN= DF
∴ME=NF=BM=DN,
又∵∠ABC=∠CDA,
∴∠MBF=∠NDE,
又∵AD=BC,
AE=CF,
∴DE=BF,
∴△MBF≌△NDE,
∴MF=NE,
∴四邊形MFNE是平行四邊形.
【點(diǎn)評(píng)】此題考查了平行四邊形的判定和全等三角形的判定,學(xué)會(huì)在已知條件中多次證明三角形全等,尋求角邊的轉(zhuǎn)化,從而求證結(jié)論.
看了“人教版八年級(jí)上數(shù)學(xué)期末試卷”的人還看了:
1.人教版八年級(jí)上數(shù)學(xué)期末試卷及答案
2.人教版八年級(jí)上冊(cè)數(shù)學(xué)期末試卷及答案
3.八年級(jí)上冊(cè)數(shù)學(xué)期末試卷附答案