高二數(shù)學(xué)三角函數(shù)學(xué)習(xí)要點(diǎn)
數(shù)學(xué)數(shù)學(xué)是高考的三大必考主科之一,數(shù)學(xué)成績的好壞也將直接關(guān)系到你是否能夠考入理想的大學(xué),高二數(shù)學(xué)也是整個高中數(shù)學(xué)學(xué)習(xí)承上啟下的一年,所以一定要下功夫?qū)W好數(shù)學(xué)。以下是學(xué)習(xí)啦小編為您整理的關(guān)于高二數(shù)學(xué)三角函數(shù)學(xué)習(xí)要點(diǎn)的相關(guān)資料,供您閱讀。
高二數(shù)學(xué)三角函數(shù)學(xué)習(xí)要點(diǎn)
一、函數(shù)學(xué)習(xí)的幾個步驟
先送小詩一首
學(xué)函數(shù)
函數(shù)函數(shù)定義鋪路, 式子擺出,再限制參數(shù),
定義域優(yōu)先,值域斷后,
圖像是小名,性質(zhì)是輔助,
拓展要灑脫,應(yīng)用要把握好步驟,
學(xué)吧,學(xué)吧,請走出自己的路。
1、學(xué)習(xí)某個函數(shù)肯定是先學(xué)習(xí)定義,而定義一般是用函數(shù)式來定義的,并且定義式中的參數(shù)一般會有一定的限制。如:一次函數(shù)y=ax+b,a不為0。
2、定義域優(yōu)先應(yīng)該說所有的老師都明白,但是應(yīng)用的時候就可能會忘記,事實(shí)上在方程與不等式的研究中也應(yīng)該有“定義域”優(yōu)先的原則。缺少了定義域就不是完整的函數(shù)的定義了。而函數(shù)的值域是由解析式與定義域唯一確定的,所以一般不寫。但它是研究的重點(diǎn),研究的方法也非常多,并且不同的函數(shù)研究的方法不一樣。
3、圖像也是表示函數(shù)的一種方式,它直觀,用其研究性質(zhì)或是直接解題會很方便。性質(zhì)只是對函數(shù)的一種深入思考,研究時不能受到局限。
4、拓展包括定義與性質(zhì),比如研究參數(shù)對函數(shù)的影響,值域中要研究最大最小值,奇偶性應(yīng)該研究其它的對稱性等;函數(shù)應(yīng)用題的思考步驟應(yīng)該是:?是自變量,?是函數(shù),什么關(guān)系?,定義域怎么樣?,……
5、談?wù)労瘮?shù)定義中的參數(shù)對單調(diào)性的影響
各位朋友有沒有注意到這一點(diǎn):
函數(shù)定義中的參數(shù)對函數(shù)的單調(diào)性產(chǎn)生直接的影響……
(1)一次函數(shù):a>0時,單調(diào)增;a<0時,單調(diào)減;
(2)二次函數(shù):a>0時,減后增;a<0時,增后減;
(3)三次函數(shù):a>0時,一直增或是增減增;a<0時,一直減或是減增減;
(4)指數(shù)函數(shù)與對數(shù)函數(shù):當(dāng)0
二、三角函數(shù)學(xué)習(xí)的序曲
再送小詩一首
推廣角
角角角,銳角直角加鈍角,皆為圖形角;
有始有終旋轉(zhuǎn)角,有逆有順任意角,放入直角坐標(biāo)后,終邊確定解析角;
銳角鈍角是單區(qū)角,象限角為多區(qū)角,直角只是一個角,象限間角是多個角;
角角角,用度做單位太蹩腳,改用弧度才真正吹起函數(shù)的號角。
1、用平面內(nèi)從一點(diǎn)發(fā)出的兩條射線所構(gòu)成的圖形來定義角,是中學(xué)生最先學(xué)到的角的概念,這種定義下的角叫圖形角;
2、由平面內(nèi)的一條確定的射線繞起點(diǎn)旋轉(zhuǎn)而形成的角,定義為旋轉(zhuǎn)角,開始的射線為角的始邊,終止的位置射線為終邊,旋轉(zhuǎn)角的范圍可以達(dá)到一周;
3、把上述的逆時針方向旋轉(zhuǎn)而成的角定義為正角,順時針方向旋轉(zhuǎn)而形成的角定義為負(fù)角,轉(zhuǎn)過的度數(shù)定義為角的大小,此時的角為任意角;
4、為了研究三角函數(shù)我們使任意角的始邊與x的非負(fù)半軸重合,這樣被確定的角我們(也許只有我自己)把它叫做解析角。此時一個終邊可以確定無限多個任意角;
5、用弧的長度與對應(yīng)圓的半徑的比值來度量角,就是我們引入的弧度制,所以弧度就是用弧來度量的意思;
6、省略了角的弧度這個單位之后,角的大小就與實(shí)數(shù)產(chǎn)生了一一對應(yīng)的關(guān)系,這為研究三角函數(shù)提供了必要的前提條件;
7、角的再發(fā)展
當(dāng)角在平面上感覺有點(diǎn)郁悶的時候,它就開始了新的旅程:
(1)異面直線所成的角;
(2)斜線與平面所成的角;
(3)二面角;
三、表示法中的過渡
一般來說,我們表示函數(shù)習(xí)慣于用y=f(x)表示,其中x表示自變量,y表示函數(shù),f表示對應(yīng)關(guān)系。那么我們有沒有注意到,學(xué)習(xí)三角函數(shù)的過程中:
1、初中就學(xué)習(xí)了三角函數(shù),但是沒有說什么是自變量,什么是函數(shù)。只是在直角三角形中,定義了銳角a的正弦、余弦、正切。
2、高中把角推廣到任意角之后,給出三角函數(shù)的定義時,使用的角仍然為a,只是定義用解析角的終邊上的任意一點(diǎn)的坐標(biāo)和該點(diǎn)到原點(diǎn)的距離來定義(特別地,也可用終邊與單位圓的交點(diǎn)的坐標(biāo)定義),知道這是為什么嗎?
3、在研究三角函數(shù)的圖象與性質(zhì)的時候, 才把正弦函數(shù)的解析式寫成y=sinx,余弦寫為y=cosx......
教學(xué)中,千萬不要忽略這一點(diǎn),教材這樣處理是有它自已的道理的。
四、幾個定義的對照
1、初中學(xué)習(xí)了在直角三角形中定義銳角的三角函數(shù),定義過程沒有任何理由,利用定義可以根據(jù)兩個特殊三角形記憶三個特殊角的三角函數(shù)值;
2、在直角坐標(biāo)系中,用角的終邊與單位圓的交點(diǎn)縱坐標(biāo)定義正弦,用橫坐標(biāo)定義角的余弦,……,利用這個公式容易證明同角關(guān)系式,容易看出不同象限角的各個三角函數(shù)值的符號,也容易得到相關(guān)的誘導(dǎo)公式;
3、單位圓中的三角函數(shù)線也是三角函數(shù)的定義,只不過是用有向線段的數(shù)量來定義的,利用這個定義容易畫出三角函數(shù)的圖像,解決一些比較大小的問題或是求三角函數(shù)值;
4、利用角的終邊上的任意一點(diǎn)的坐標(biāo)與該點(diǎn)到坐標(biāo)原點(diǎn)的距離來定義,這個定義是上述二者中所述定義的一般形式,可以用來解決一般的問題;
5、在整個三角函數(shù)定義的過程中,讓我們感覺到了學(xué)習(xí)的知識是在不斷地發(fā)展中的,知識的內(nèi)在聯(lián)系非常密切,應(yīng)該體會同一性之中有著自己的特點(diǎn)。
五、同角關(guān)系式的運(yùn)用
新教材中,重點(diǎn)學(xué)習(xí)兩個同角關(guān)系式,一個是平方關(guān)系的,另一個是商數(shù)關(guān)系的。兩個公式各有應(yīng)用,運(yùn)用時應(yīng)該注意以下幾點(diǎn):
1、平方關(guān)系可以完成正余弦的互求,注意開方時應(yīng)該有兩個平方根,所以在角未受到一定的限制時,應(yīng)該仔細(xì)考慮結(jié)果的符號,而無限制時就應(yīng)該討論了。
2、商數(shù)關(guān)系的最大應(yīng)用是“弦切互化”。注意與“余角余函數(shù)”公式對應(yīng)學(xué)習(xí)與結(jié)合運(yùn)用。
六、誘導(dǎo)公式的理解
1、誘導(dǎo)公式在教材上占了較大篇幅,從誘導(dǎo)公式(一)到誘導(dǎo)公式(六),最后結(jié)果是:較差的學(xué)生死記硬背,學(xué)一個忘一個;中等的學(xué)生似懂非懂,會做一些簡單的題;優(yōu)秀生學(xué)完之后,感覺太簡單了,不知道為什么還要論述那么久?你的學(xué)生是不是這樣呢?
2、有一個口訣:“奇變偶不變,符號看象限。”多數(shù)的學(xué)生都知道,但是知其然不知其所以然。所以,好多的學(xué)生不會用。追究其原因,仍然是不理解造成的。
3、這些公式的形式都是從一個三角函數(shù)轉(zhuǎn)化成另一個三角函數(shù),可以同名也可以不同名。那么,我們?yōu)槭裁匆D(zhuǎn)化呢?求值?求角?還是?
4、復(fù)雜之中,有著一絲不變的線索,它是什么呢?——“角的變化”。事實(shí)上是把終邊相同或是關(guān)于x軸、y軸或是坐標(biāo)原點(diǎn)對稱的角與角之間建立起來的等量關(guān)系。這些公式能把角從一個象限轉(zhuǎn)化到其它象限中,或者說是與其它象限中的某些相關(guān)角建立聯(lián)系。我們把這種聯(lián)系的起源選定,其它就都是利用上述公式“誘惑”與“引導(dǎo)”而來。在做題目的時候,可以有上述的體會。
5、例如:已知sinA=-1/2,A在第四象限,請把A角表示出來。熟練的老師或是學(xué)生,可能一下就可以看出,有一個特角-30度,再加上360度的整數(shù)倍就可以了。但不熟練的學(xué)生怎么辦呢?用誘導(dǎo)的辦法就可以完成。第一步:在銳角中找一個角,使它的正弦值為1/2,那么當(dāng)然是30度了。第二步:把30度誘導(dǎo)到第四象限,可以就是-30度,也可以是360度減去30度,第三步:把第二步的角再加上360度的整數(shù)倍就可以了。如果想誘導(dǎo)到第二象限,只需用180度減;如果想誘導(dǎo)到第三象限,就用180度加就好了。
6、誘導(dǎo)公式口訣“奇變偶不變,符號看象限”的正確性可以用“和差角公式”去驗(yàn)證,sin(π/2-x)=sin(π/2)cosx-cos(π/2)sinx=cosx。輔助角公式配合單位圓,用數(shù)量積定義去理解,acosx+bsinx=(a,b)·(cosx,sinx),對于學(xué)生進(jìn)一步理解所學(xué)知識是非常有好處的。同時,我們也不能不看到,原來的思路與方法和公式可能解決的問題是不可代替的。
七、三角函數(shù)的圖像與性質(zhì)的深入思考1、三角函數(shù)圖像的作法與其它函數(shù)的圖像的作法相同,基本步驟應(yīng)該是:
(1)確定函數(shù)定義域,值域;
(2)研究單調(diào)性與奇偶性等性質(zhì);
(3)取關(guān)鍵點(diǎn)列表描點(diǎn);
(4)結(jié)合函數(shù)的變化速度與變化趨勢連線作圖;
2、與其它函數(shù)不同的就是周期性,體會最小正周期,與起點(diǎn)的位置無關(guān);
3、三角函數(shù)線是三角函數(shù)的幾何定義,它把三角函數(shù)值準(zhǔn)確的用有向線段的數(shù)量表示出來,這為準(zhǔn)確描點(diǎn)提供了保障;
4、由于圖像本身就是函數(shù)的定義的一種形式,所以對函數(shù)圖像的研究就顯得非常的重要,而函數(shù)的性質(zhì)都寫在函數(shù)的圖像上,所以不必太追究性質(zhì)是什么、分幾條,而應(yīng)該讓學(xué)生學(xué)會讀懂函數(shù)的圖像語言,會運(yùn)用函數(shù)的圖像解題就可以了;
5、所謂深入思考就是體會函數(shù)=Asin(wx+q)+b中的各個參數(shù)對函數(shù)圖像的影響,對性質(zhì)的影響,這一點(diǎn)應(yīng)該與其它函數(shù)對照研究;
6、關(guān)于正弦與余弦函數(shù)圖像與性質(zhì)的再思考
(1)單調(diào)區(qū)間的長度為最小正周期長度的一半,單調(diào)區(qū)間的兩個端點(diǎn)是函數(shù)取到最值的點(diǎn);
(2)函數(shù)圖像與x軸(平衡位置)的交點(diǎn)都是它們的對稱中心,過最大或最小值點(diǎn)垂直于x軸(平衡位置所在的直線)的直線都是它們的對稱軸。相鄰的對稱中心或是兩個對稱軸之間的距離應(yīng)該是周期的一半;
(3)兩個函數(shù)圖像形狀相同,只是在坐標(biāo)系中的位置不同,它們左右位置差周期的1/4;
(4)對于函數(shù)y=Asin(wx+q)+b或y=Acos(wx+q)+b來說,對以上三條只需進(jìn)行稍微的修改即可。
八、平移與伸縮變換的引申有好多的學(xué)生在平移與伸縮變換的時候會混淆,知其然不知所以然……。下面提出幾個問題,請各位朋友一起思考,你們在教學(xué)的時候是否對它們進(jìn)行了研究?1、對于平移口訣:“左加右減,上加下減”的理解……左是x軸的負(fù)半軸,為什么要加呢?右是x軸的正半軸,為什么要減呢?上是y軸的正半軸,加就好理解了,下是y軸的負(fù)半軸也是一回事。2、對于左右平移與橫坐標(biāo)的伸縮變換,如果先后順序倒置,則平移的量就可能不一致,這是為什么呢?3、把平移與伸縮變換推廣到一般情況應(yīng)該是什么樣的?關(guān)鍵在什么地方?4、左右與上下平移變換與沿某向量平移的關(guān)系如何?5、對函數(shù)的平移與對曲線的平移有區(qū)別嗎?6、平移函數(shù)的圖像與坐標(biāo)變換怎樣進(jìn)行區(qū)別?各有什么優(yōu)點(diǎn)?
(1)對于平移口訣:“左加右減,上加下減”的理解……左是x軸的負(fù)半軸,為什么要加呢?右是x軸的正半軸,為什么要減呢?上是y軸的正半軸,加就好理解了,下是y軸的負(fù)半軸也是一回事。
這個問題其實(shí)是這樣的:向左移,每點(diǎn)的橫坐標(biāo)都在減少,應(yīng)該把橫坐標(biāo)減去移動的量。但是,你必須把函數(shù)式y(tǒng)=f(x)變成x=g(y)的形式之后完成。比如:你把函數(shù)圖像向左平移了2個單位,那么,函數(shù)式x=g(y)應(yīng)該變?yōu)椋簒=g(y)-2。而這個式子變形之后就是:y=f(x+2)了。
別的還用說嗎?
(2)對于左右平移與橫坐標(biāo)的伸縮變換,如果先后順序倒置,則平移的量就可能不一致,這是為什么呢?
同問1的回答:把函數(shù)y=f(x)變形為x=g(y),如果向右平移a個單位,則變?yōu)閤=g(y)+a,再伸縮為原來的b倍,則變?yōu)閤=b[g(y)+a],解得:y=f[(1/b)x-a];如果橫坐標(biāo)先伸縮為原來的b倍,則變?yōu)閤=bg(x),再向右平移a個單位,則變?yōu)閤=bg(y)+a,解得:y=f[1/b(x-a)]。顯然所得兩函數(shù)表達(dá)式不同……
7、把平移與伸縮變換推廣到一般情況應(yīng)該是什么樣的?關(guān)鍵在什么地方?
(1)如果把函數(shù)y=f(x)的圖像向左平移a個單位,然后再把每個點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼腷倍,則所得圖像對應(yīng)的函數(shù)解析式為:y=f(bx+a);
(2)如果把函數(shù)y=f(x)的圖像每個點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼腷倍,然后再把圖像向左平移a個單位,則所得圖像對應(yīng)的函數(shù)解析式為:y=f[b(x+a)];
仔細(xì)分析,左右的平移與每點(diǎn)橫坐標(biāo)的伸縮都是對自變量x而言的,只對x做相應(yīng)的處理。
8、左右與上下平移變換與沿某向量平移的關(guān)系如何?
左右的平移就是向量的橫坐標(biāo),上下的平移就在于向量的縱坐標(biāo),橫與縱坐標(biāo)的符號代表平移的方向。目標(biāo)相同,路徑不同罷了。
9、對函數(shù)的平移與對曲線的平移有區(qū)別嗎?
函數(shù)本身就是方程,所以函數(shù)圖像就是曲線,所以對曲線的平移方法可以直接用到函數(shù)中來。但是,對函數(shù)圖像的平移口訣“左加右減”不可以直接用到曲線的平移之中……原因應(yīng)該由上面的可以知道了。
10、平移函數(shù)的圖像與坐標(biāo)變換怎樣進(jìn)行區(qū)別?各有什么優(yōu)點(diǎn)?
這兩者都可以完成同樣的事,那就是簡化我們要研究的函數(shù)表達(dá)或是曲線的方程,優(yōu)點(diǎn)也與些類似。各自的優(yōu)點(diǎn)可以通過例題來體會,不多述了。
九、和角與差角公式的推導(dǎo)指引1、cos(A-B)
2、cos(A+B)
3、sin(A-B)
4、sin(A+B)
5、tan(A-B)
6、tan(A+B)
7、sin2A
8、cos2A
9、tan2A
10、sinAcosA
11、(sinA)^2
12、(cosA)^2
13、asinA+bcosA
14、tanA+tanB
15、用tanA表示sin2A,cos2A,tan2A
16、……
上述公式,每天推導(dǎo)三次,連續(xù)推導(dǎo)三天,題可做,分可拿……
請注意,是推導(dǎo)不是背公式啊!
十、倍角余弦公式的變形應(yīng)用公式:cos2A=(cosA)^2-(sinA)^2=1-2(sinA)^2=2(cosA)^2-1
公式變形:(sinA)^2=1/2(1-cos2A);(cosA)^2=1/2(1+cos2A)
上述公式與正弦二倍角公式的變形統(tǒng)稱“降冪公式”,對化簡三角函數(shù)式為Asin(wx+b)的形式起到非常重要的作用。
十一、解三角形的幾個關(guān)鍵點(diǎn)1、三角形本身就是已知條件:(1)內(nèi)角和定理;(2)邊角大小關(guān)系;
2、正弦與余弦定理:注意應(yīng)用時解的取舍;
3、面積公式:注意用內(nèi)切圓半徑時,把三角形一分為三的方法,學(xué)會推導(dǎo)海淪公式;
4、三角形的重心、內(nèi)心、外心及垂心;
小結(jié):1、學(xué)習(xí)線索三角函數(shù)與其它函數(shù)一樣,學(xué)習(xí)的步驟是:
(1)定義;(2)定義域;(3)圖像;(4)性質(zhì);
但也有本身的特點(diǎn),如周期性、對稱性等,所以在上述步驟中應(yīng)該適應(yīng)加入:
(1)同角關(guān)系式;(2)誘導(dǎo)公式;(3)兩角和與差公式;(4)倍角公式……;
那么加在什么地方?怎么加呢?
2、學(xué)習(xí)重點(diǎn)剛好回答上面的問題,那些公式都是由定義直接可以得到的,可以看成是對定義的引申。在教學(xué)時應(yīng)該緊緊圍繞三角函數(shù)的定義去教學(xué)。所以,三角函數(shù)的教學(xué)重點(diǎn)就是三角函數(shù)的定義。
3、學(xué)習(xí)技巧三角函數(shù)難點(diǎn)在三角變換,所以三角變換的技巧就是學(xué)習(xí)三角函數(shù)的技巧。一般來說可以從三個方面考慮:
(1)從角上考慮:用已知角表示未知角,教材上的例題與習(xí)題都有滲透;
(2)從函數(shù)的名稱上考慮:注意把握弦與切的互化,正弦與余弦之間的轉(zhuǎn)化;
(3)從式子的結(jié)構(gòu)上考慮:公式的每一種變形都是一道很好三角題目,只有掌握了公式的全部變形才能應(yīng)用得手。如:tanB+tanC=?一般的學(xué)生不知道,尤其是當(dāng)B+C為特殊角的時候,它就完成了正切和與正切積的轉(zhuǎn)化;
一般來說,上述三個方面應(yīng)該同時考慮,解決了一兩個方面,其它方面自然平衡,題目可以順利完成。
高二數(shù)學(xué)三角函數(shù)學(xué)習(xí)要點(diǎn)相關(guān)文章:
1.高二數(shù)學(xué)三角函數(shù)知識點(diǎn)總結(jié)
4.高中數(shù)學(xué)必修4三角函數(shù)知識點(diǎn)