揚(yáng)州中學(xué)2016-2017學(xué)年高二期中數(shù)學(xué)文理科試卷
揚(yáng)州中學(xué)2016-2017學(xué)年高二期中數(shù)學(xué)文理科試卷
高二的期中考試是除了期末考試中最重要的考試,下面學(xué)習(xí)啦的小編將為大家?guī)頁P(yáng)州中學(xué)的高二數(shù)學(xué)文理科的試卷分析,希望能夠幫助到大家。
揚(yáng)州中學(xué)2016-2017學(xué)年高二期中數(shù)學(xué)文科試卷
一.填空題(每題5分,合計(jì)70分)
1. 設(shè)全集,集合,,則 ▲ .
2. 已知復(fù)數(shù)(i為虛數(shù)單位),則z的虛部為 ▲ .
3.已知函數(shù),且,則必過定點(diǎn) ▲ .
4.命題“”的否定是 ▲
5.“” 是 “” 的 ▲ 條件.
6.若在上為增函數(shù),則a的取值范圍是 ▲ .
7. 從推廣到第個(gè)等式為 ▲ .
8. 若內(nèi)切圓半徑為,三邊長為,則的面積將這個(gè)結(jié)論類比到空間:若四面體內(nèi)切球半徑為,四個(gè)面的面積為,則四面體的體積= ▲ .
9.已知,則的最大值為 ▲ .
10.若函數(shù)定義在上的奇函數(shù),且在上是增函數(shù),又,則不等式的解集為 ▲ .
11.設(shè)函數(shù)則滿足的的取值范圍是 ▲ .
12.設(shè)為實(shí)常數(shù),是定義在上的奇函數(shù),當(dāng)時(shí),,若對(duì)一切成立,則的取值范圍為在上有最大值,則實(shí)數(shù)的取值范圍是 ▲ .
14. 已知函數(shù),若對(duì)任意實(shí)數(shù),關(guān)于的方程最多有兩個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)的取值范圍是 $ ▲ .
二.解答題
15.已知集合,
(1)當(dāng)時(shí),求;(2)若,求實(shí)數(shù)的取值范圍.
,,為虛數(shù)單位.
(1)若復(fù)數(shù)對(duì)應(yīng)的點(diǎn)在第四象限,求實(shí)數(shù)的取值范圍;
(2)若,求的共軛復(fù)數(shù).
17. 已知命題指數(shù)函數(shù)在上單調(diào)遞減,命題關(guān)于的方程的兩個(gè)實(shí)根均大于3.若或?yàn)檎?且為假,求實(shí)數(shù)的取值范圍.
18. 已知函數(shù)
(1)記函數(shù)求函數(shù)的值域;
(2) 若不等式有解,求實(shí)數(shù)的取值范圍.
19.某制藥廠生產(chǎn)某種顆粒狀粉劑,由醫(yī)藥代表負(fù)責(zé)推銷,若每包藥品的生產(chǎn)成本為元,推銷費(fèi)用為元,預(yù)計(jì)當(dāng)每包藥品銷售價(jià)為元時(shí),一年的市場(chǎng)銷售量為萬包,若從民生考慮,每包藥品的售價(jià)不得高于生產(chǎn)成本的,但為了鼓勵(lì)藥品研發(fā),每包藥品的售價(jià)又不得低于生產(chǎn)成本的
(1) 寫出該藥品一年的利潤 (萬元)與每包售價(jià)的函數(shù)關(guān)系式,并指出其定義域;
(2) 當(dāng)每包藥品售價(jià)為多少元時(shí),年利潤最大,最大值為多少?
20.已知函數(shù).
(1)求函數(shù)的圖象在處$的切線方程;
(2)若$函數(shù)在上有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)是否存在實(shí)數(shù),使得對(duì)任意的,都有函數(shù)的圖象在的圖象的下方?若存在,請(qǐng)求出最大整數(shù)的值;若不存在,請(qǐng)說理由.
(參考數(shù)據(jù):,).
江蘇省揚(yáng)州中學(xué)2016——2017年度高二下學(xué)期數(shù)學(xué)(文)期中試卷
參考答案
1. ; 2. ; 3. ; $ 4.; 5. 充分不必要;
6. ; 7. ;
8. ; 9. ; 10. 或-;
11. ; 12. ; 13. ;
14.
15. 解:(1). (2)實(shí)數(shù)的取值范圍是由題意得解得
(2)
17. 解:,
記,由的兩根均大于得:,所以,.
由于或?yàn)檎?且為假,所以,或.
18.解:(1)定義域,∴,
對(duì)稱軸為∴的值域?yàn)?/p>
(2)∵有解,∴,令,∴,
∴
19.解: (1)由題意,
(2)
① 當(dāng)時(shí),,在上恒成立,即為減函數(shù),所以,萬元
?、诋?dāng)時(shí),,當(dāng)時(shí),
當(dāng)時(shí),,即在上為增函數(shù),在
上為減函數(shù),所以,萬元
20.解:(1)因?yàn)椋?,則所求切線的斜率為, ……………2分
又,故所求切線的方程為. ................4分
(2)因?yàn)椋瑒t由題意知方程在上有兩個(gè)不同的根.
由,得, ……………6分
令,則,由,解得.
當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增,
所以當(dāng)時(shí),取得最小值為. ……………8分
又,(圖象如右圖所示),
所以,解得. ……………10分
(3)假設(shè)存在實(shí)數(shù)滿足題意,則不等式對(duì)恒成立.
即對(duì)恒成立.
令,則, ……12分
令,則,
因?yàn)樵谏蠁握{(diào)遞增,,,且的圖象在上不間斷,所以存在,使得,即,則,
所以當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增,
則取到最小值,…14分
所以,即在區(qū)間內(nèi)單調(diào)遞增.
所以,
所以存在實(shí)數(shù)滿足題意,且最大整數(shù)的值為. ……………16分
點(diǎn)擊下頁查看更多揚(yáng)州中學(xué)2016-2017學(xué)年高二期中數(shù)學(xué)理科試卷