高三數(shù)學(xué)函數(shù)零點的判定定理知識點
函數(shù)零點問題是高等數(shù)學(xué)中的重要問題,高中數(shù)學(xué)課程中有基本的介紹,下面是學(xué)習(xí)啦小編給大家?guī)淼母呷龜?shù)學(xué)函數(shù)零點的判定定理知識點,希望對你有幫助。
高三數(shù)學(xué)函數(shù)零點的判定定理知識點(一)
函數(shù)零點存在性定理:
一般地,如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)。f(b)<o,那么函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,即存在c∈(a,b),使得f(c)=O,這個c也就是f(x)=0的根。特別提醒:(1)根據(jù)該定理,能確定f(x)在(a,b)內(nèi)有零點,但零點不一定唯一。
(2)并不是所有的零點都可以用該定理來確定,也可以說不滿足該定理的條件,并不能說明函數(shù)在(a,b)上沒有零點,例如,函數(shù)f(x) =x2-3x +2有f(0)·f(3)>0,但函數(shù)f(x)在區(qū)間(0,3)上有兩個零點。
(3)若f(x)在[a,b]上的圖象是連續(xù)不斷的,且是單調(diào)函數(shù),f(a)。f(b)<0,則fx)在(a,b)上有唯一的零點。
函數(shù)零點個數(shù)的判斷方法:
(1)幾何法:對于不能用求根公式的方程,可以將它與函數(shù)y =f(x)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點。
特別提醒:①“方程的根”與“函數(shù)的零點”盡管有密切聯(lián)系,但不能混為一談,如方程x2-2x +1 =0在[0,2]上有兩個等根,而函數(shù)f(x)=x2-2x +1在[0,2]上只有一個零點
?、诤瘮?shù)的零點是實數(shù)而不是數(shù)軸上的點。
(2)代數(shù)法:求方程f(x)=0的實數(shù)根。
高三數(shù)學(xué)函數(shù)零點的判定定理知識點(二)
判斷函數(shù)零點個數(shù)的常用方法
(1)解方程法:令f(x)=0,如果能求出解,則有幾個解就有幾個零點。
(2)零點存在性定理法:利用定理不僅要判斷函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性、周期性、對稱性)才能確定函數(shù)有多少個零點。
(3)數(shù)形結(jié)合法:轉(zhuǎn)化為兩個函數(shù)的圖象的交點個數(shù)問題。先畫出兩個函數(shù)的圖象,看其交點的個數(shù),其中交點的個數(shù),就是函數(shù)零點的個數(shù)。