2017高考必備數(shù)學公式
掌握數(shù)學公式,對你的考試是有所幫助的。下面是學習啦小編網(wǎng)絡整理的2017高考必備數(shù)學公式以供大家學習。
2017高考必備數(shù)學公式(一)
通項公式的求法:
(1)構造等比數(shù)列:凡是出現(xiàn)關于后項和前項的一次遞推式都可以構造等比數(shù)列求通項公式;
(2)構造等差數(shù)列:遞推式不能構造等比數(shù)列時,構造等差數(shù)列;
(3)遞推:即按照后項和前項的對應規(guī)律,再往前項推寫對應式。
已知遞推公式求通項常見方法:
?、僖阎猘1=a,an+1=qan+b,求an時,利用待定系數(shù)法求解,其關鍵是確定待定系數(shù)λ,使an+1 +λ=q(an+λ)進而得到λ。
?、谝阎猘1=a,an=an-1+f(n)(n≥2),求an時,利用累加法求解,即an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)的方法。
③已知a1=a,an=f(n)an-1(n≥2),求an時,利用累乘法求解。
2017高考必備數(shù)學公式(二)
高考數(shù)學爆強秒殺公式與方法
1,適用條件:[直線過焦點],必有ecosA=(x-1)/(x+1),其中A為直線與焦點所在軸夾角,是銳角。x為分離比,必須大于1。注上述公式適合一切圓錐曲線。如果焦點內(nèi)分(指的是焦點在所截線段上),用該公式;如果外分(焦點在所截線段延長線上),右邊為(x+1)/(x-1),其他不變。
2,函數(shù)的周期性問題(記憶三個):1、若f(x)=-f(x+k),則T=2k;
2、若f(x)=m/(x+k)(m不為0),則T=2k;3、若f(x)=f(x+k)+f(x-k),則T=6k。注意點:a.周期函數(shù),周期必無限b.周期函數(shù)未必存在最小周期,如:常數(shù)函數(shù)。c.周期函數(shù)加周期函數(shù)未必是周期函數(shù),如:y=sinxy=sin派x相加不是周期函數(shù)。
3,關于對稱問題(無數(shù)人搞不懂的問題)總結(jié)如下:1,若在R上(下同)滿足:f(a+x)=f(b-x)恒成立,對稱軸為x=(a+b)/2;2、函數(shù)y=f(a+x)與y=f(b-x)的圖像關于x=(b-a)/2對稱;3、若f(a+x)+f(a-x)=2b,則f(x)圖像關于(a,b)中心對稱
4,函數(shù)奇偶性1、對于屬于R上的奇函數(shù)有f(0)=0;2、對于含參函數(shù),奇函數(shù)沒有偶次方項,偶函數(shù)沒有奇次方項3,奇偶性作用不大,一般用于選擇填空
5,數(shù)列爆強定律:1,等差數(shù)列中:S奇=na中,例如S13=13a7(13和7為下角標);2等差數(shù)列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差3,等比數(shù)列中,上述2中各項在公比不為負一時成等比,在q=-1時,未必成立4,等比數(shù)列爆強公式:S(n+m)=S(m)+q²mS(n)可以迅速求q
6,數(shù)列的終極利器,特征根方程。(如果看不懂就算了)。首先介紹公式:對于an+1=pan+q(n+1為下角標,n為下角標),a1已知,那么特征根x=q/(1-p),則數(shù)列通項公式為an=(a1-x)p²(n-1)+x,這是一階特征根方程的運用。二階有點麻煩,且不常用。所以不贅述。希望同學們牢記上述公式。當然這種類型的數(shù)列可以構造(兩邊同時加數(shù))
7,函數(shù)詳解補充:1、復合函數(shù)奇偶性:內(nèi)偶則偶,內(nèi)奇同外2,復合函數(shù)單調(diào)性:同增異減3,重點知識關于三次函數(shù):恐怕沒有多少人知道三次函數(shù)曲線其實是中心對稱圖形。它有一個對稱中心,求法為二階導后導數(shù)為0,根x即為中心橫坐標,縱坐標可以用x帶入原函數(shù)界定。另外,必有唯一一條過該中心的直線與兩旁相切。
8,常用數(shù)列bn=n×(2²n)求和Sn=(n-1)×(2²(n+1))+2記憶方法:前面減去一個1,后面加一個,再整體加一個2
9,適用于標準方程(焦點在x軸)爆強公式:k橢=-{(b²)xo}/{(a²)yo}k雙={(b²)xo}/{(a²)yo}k拋=p/yo注:(xo,yo)均為直線過圓錐曲線所截段的中點。
10,強烈推薦一個兩直線垂直或平行的必殺技:已知直線L1:a1x+b1y+c1=0直線L2:a2x+b2y+c2=0若它們垂直:(充要條件)a1a2+b1b2=0;若它們平行:(充要條件)a1b2=a2b1且a1c2≠a2c1[這個條件為了防止兩直線重合)注:以上兩公式避免了斜率是否存在的麻煩,直接必殺!
高考前掌握數(shù)學的公式是很有幫助,想進一步攻克高中其他課程不妨多聽一些名師主講課程,高考也能拿高分?。c擊圖片直接進入體驗學習哦?。。。?/span>
猜你感興趣: