高一數(shù)學必修一總復習資料
學習需要講究方法和技巧,更要學會對知識點進行歸納整理。下面是學習啦小編為大家整理的高一數(shù)學必修一總復習資料,希望對大家有所幫助!
高一數(shù)學必修一知識點匯總:集合
一、集合
一、集合有關(guān)概念
1. 集合的含義
2. 集合的中元素的三個特性:
(1) 元素的確定性如:世界上最高的山
(2) 元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3) 元素的無序性: 如:{a,b,c}和{a,c,b}是表示同一個集合
3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2) 集合的表示方法:列舉法與描述法。
注意:常用數(shù)集及其記法:
非負整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實數(shù)集R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。{xR| x-3>2} ,{x| x-3>2}
3)語言描述法:例:{不是直角三角形的三角形}
4) Venn圖:
4、集合的分類:
(1) 有限集 含有有限個元素的集合
(2) 無限集 含有無限個元素的集合
(3) 空集 不含任何元素的集合 例:{x|x2=-5}
二、集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A
2.“相等”關(guān)系:A=B (5≥5,且5≤5,則5=5)
實例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”
即:①任何一個集合是它本身的子集。AA
?、谡孀蛹?如果AB,且A B那就說集合A是集合B的真子集,記作A B(或B A)
?、廴绻?AB, BC ,那么 AC
?、苋绻鸄B 同時 BA 那么A=B
3. 不含任何元素的集合叫做空集,記為Φ
規(guī)定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n個元素的集合,含有2n個子集,2n-1個真子集
二、函數(shù)
1、函數(shù)定義域、值域求法綜合
2.、函數(shù)奇偶性與單調(diào)性問題的解題策略
3、恒成立問題的求解策略
4、反函數(shù)的幾種題型及方法
5、二次函數(shù)根的問題——一題多解
&指數(shù)函數(shù)y=a^x
a^a*a^b=a^a+b(a>0,a、b屬于Q)
(a^a)^b=a^ab(a>0,a、b屬于Q)
(ab)^a=a^a*b^a(a>0,a、b屬于Q)
指數(shù)函數(shù)對稱規(guī)律:
1、函數(shù)y=a^x與y=a^-x關(guān)于y軸對稱
2、函數(shù)y=a^x與y=-a^x關(guān)于x軸對稱
3、函數(shù)y=a^x與y=-a^-x關(guān)于坐標原點對稱
&對數(shù)函數(shù)y=loga^x
如果,且,,,那么:
○1 • +;
○2 -;
○3 .
注意:換底公式
(,且;,且;).
冪函數(shù)y=x^a(a屬于R)
1、冪函數(shù)定義:一般地,形如 的函數(shù)稱為冪函數(shù),其中為常數(shù).
2、冪函數(shù)性質(zhì)歸納.
(1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過點(1,1);
(2)時,冪函數(shù)的圖象通過原點,并且在區(qū)間上是增函數(shù).特別地,當時,冪函數(shù)的圖象下凸;當時,冪函數(shù)的圖象上凸;
(3)時,冪函數(shù)的圖象在區(qū)間上是減函數(shù).在第一象限內(nèi),當從右邊趨向原點時,圖象在軸右方無限地逼近軸正半軸,當趨于時,圖象在軸上方無限地逼近軸正半軸.
方程的根與函數(shù)的零點
1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。
2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。
即:方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.
3、函數(shù)零點的求法:
○1 (代數(shù)法)求方程的實數(shù)根;
○2 (幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.
4、二次函數(shù)的零點:
二次函數(shù).
(1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.
(2)△=0,方程有兩相等實根,二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.
(3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.
三、平面向量
向量:既有大小,又有方向的量.
數(shù)量:只有大小,沒有方向的量.
有向線段的三要素:起點、方向、長度.
零向量:長度為的向量.
單位向量:長度等于個單位的向量.
相等向量:長度相等且方向相同的向量
&向量的運算
加法運算
AB+BC=AC,這種計算法則叫做向量加法的三角形法則。
已知兩個從同一點O出發(fā)的兩個向量OA、OB,以O(shè)A、OB為鄰邊作平行四邊形OACB,則以O(shè)為起點的對角線OC就是向量OA、OB的和,這種計算法則叫做向量加法的平行四邊形法則。
對于零向量和任意向量a,有:0+a=a+0=a。
|a+b|≤|a|+|b|。
向量的加法滿足所有的加法運算定律。
減法運算
與a長度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。
(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。
數(shù)乘運算
實數(shù)λ與向量a的積是一個向量,這種運算叫做向量的數(shù)乘,記作λa,|λa|=|λ||a|,當λ > 0時,λa的方向和a的方向相同,當λ< 0時,λa的方向和a的方向相反,當λ = 0時,λa = 0。
設(shè)λ、μ是實數(shù),那么:(1)(λμ)a = λ(μa)(2)(λμ)a = λa μa(3)λ(a ± b) = λa ±λb(4)(-λ)a =-(λa) = λ(-a)。
向量的加法運算、減法運算、數(shù)乘運算統(tǒng)稱線性運算。
向量的數(shù)量積
已知兩個非零向量a、b,那么|a||b|cos θ叫做a與b的數(shù)量積或內(nèi)積,記作a?b,θ是a與b的夾角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數(shù)量積為0。
a?b的幾何意義:數(shù)量積a?b等于a的長度|a|與b在a的方向上的投影|b|cosθ的乘積。
兩個向量的數(shù)量積等于它們對應(yīng)坐標的乘積的和。
四、三角函數(shù)
1、善于用“1“巧解題
2、三角問題的非三角化解題策略
3、三角函數(shù)有界性求最值解題方法
4、三角函數(shù)向量綜合題例析
5、三角函數(shù)中的數(shù)學思想方法
高一數(shù)學必修一知識點匯總:函數(shù)的有關(guān)概念
1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域.
注意:
1.定義域:能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域。
求函數(shù)的定義域時列不等式組的主要依據(jù)是:
(1)分式的分母不等于零;
(2)偶次方根的被開方數(shù)不小于零;
(3)對數(shù)式的真數(shù)必須大于零;
(4)指數(shù)、對數(shù)式的底必須大于零且不等于1.
(5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.
(6)指數(shù)為零底不可以等于零,
(7)實際問題中的函數(shù)的定義域還要保證實際問題有意義.
u 相同函數(shù)的判斷方法:①表達式相同(與表示自變量和函數(shù)值的字母無關(guān));②定義域一致 (兩點必須同時具備)
(見課本21頁相關(guān)例2)
2.值域 : 先考慮其定義域
(1)觀察法
(2)配方法
(3)代換法
3. 函數(shù)圖象知識歸納
(1)定義:在平面直角坐標系中,以函數(shù) y=f(x) , (x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的集合C,叫做函數(shù) y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標的點(x,y),均在C上 .
(2) 畫法
A、 描點法:
B、 圖象變換法
常用變換方法有三種
1) 平移變換
2) 伸縮變換
3) 對稱變換
4.區(qū)間的概念
(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間
(2)無窮區(qū)間
(3)區(qū)間的數(shù)軸表示.
5.映射
一般地,設(shè)A、B是兩個非空的集合,如果按某一個確定的對應(yīng)法則f,使對于集合A中的任意一個元素x,在集合B中都有唯 通過上面的高一數(shù)學必修1知識點總結(jié),同學已經(jīng)梳理了一遍高一數(shù)學必修1的知識點,也加深了對該知識的更深了解,相信同學們一定能學好這部分知識點,也希望同學們以后學習中多做總結(jié)。