高一數(shù)學《方程的根與函數(shù)的零點》說課稿
高一數(shù)學《方程的根與函數(shù)的零點》說課稿
"說課"是教學改革中涌現(xiàn)出來的新生事物,是進行教學研究、教學交流和教學探討的一種新的教學研究形式,也是集體備課的進一步發(fā)展,而說課稿則是為進行說課準備的文稿。下面是學習啦小編為大家整理的高一數(shù)學《方程的根與函數(shù)的零點》說課稿,歡迎參考!
高一數(shù)學《方程的根與函數(shù)的零點》說課稿
一、本課數(shù)學內(nèi)容的本質(zhì)、地位、作用分析
普通高中課標教材必修1共安排了三章內(nèi)容,第一章是《集合與函數(shù)的概念》,第二章是《基本初等函數(shù)(Ⅰ)》,第三章是《函數(shù)的應用》。第三章編排了兩塊內(nèi)容,第一部分是函數(shù)與方程,第二部分是函數(shù)模型及其應用。本節(jié)課方程的根與函數(shù)的零點,正是在這種建立和運用函數(shù)模型的大背景下展開的。本節(jié)課的主要教學內(nèi)容是函數(shù)零點的定義和函數(shù)零點存在的判定依據(jù),這兩者顯然是為下節(jié)“用二分法求方程近似解”這一“函數(shù)的應用”服務的,同時也為后續(xù)學習的算法埋下伏筆。由此可見,它起著承上啟下的作用,與整章、整冊綜合成一個整體,學好本節(jié)意義重大。
函數(shù)在數(shù)學中占據(jù)著不可替代的核心地位,根本原因之一在于函數(shù)與其他知識具有廣泛的聯(lián)系,而函數(shù)的零點就是其中的一個鏈結(jié)點,它從不同的角度,將數(shù)與形,函數(shù)與方程有機地聯(lián)系在一起。方程本身就是函數(shù)的一部分,用函數(shù)的觀點來研究方程,就是將局部放入整體中研究,進而對整體和局部都有一個更深層次的理解,并學會用聯(lián)系的觀點解決問題,為后面函數(shù)與不等式和數(shù)列等其他知識的聯(lián)系奠定基礎。
二、教學目標分析
本節(jié)內(nèi)容包含三大知識點:
一、函數(shù)零點的定義;
二、方程的根與函數(shù)零點的等價關系;
三、零點存在性定理。
結(jié)合本節(jié)課引入三大知識點的方法,設定本節(jié)課的知識與技能目標如下:
1.結(jié)合方程根的幾何意義,理解函數(shù)零點的定義;
2.結(jié)合零點定義的探究,掌握方程的實根與其相應函數(shù)零點之間的等價關系;
3.結(jié)合幾類基本初等函數(shù)的圖象特征,掌握判斷函數(shù)的零點個數(shù)和所在區(qū)間的方法.
本節(jié)課是學生在學習了函數(shù)的性質(zhì),具備了初步的數(shù)形結(jié)合知識的基礎上,通過對特殊函數(shù)圖象的分析進行展開的,是培養(yǎng)學生“化歸與轉(zhuǎn)化思想”,“ 數(shù)形結(jié)合思想”, “函數(shù)與方程思想”的優(yōu)質(zhì)載體。
結(jié)合本節(jié)課教學主線的設計,設定本節(jié)課的過程與方法目標如下:
1.通過化歸與轉(zhuǎn)化思想的引導,培養(yǎng)學生從已有認知結(jié)構(gòu)出發(fā),尋求解決棘手問題方法的習慣;
2.通過數(shù)形結(jié)合思想的滲透,培養(yǎng)學生主動應用數(shù)學思想的意識;
3.通過習題與探究知識的相關性設置,引導學生深入探究得出判斷函數(shù)的零點個數(shù)和所在區(qū)間的方法;
4.通過對函數(shù)與方程思想的不斷剖析,促進學生對知識靈活應用的能力。
由于本節(jié)課將以教師引導,學生探究為主體形式,故設定本節(jié)課的情感、態(tài)度與價值觀目標如下:
1.讓學生體驗化歸與轉(zhuǎn)化、數(shù)形結(jié)合、函數(shù)與方程這三大數(shù)學思想在解決數(shù)學問題時的意義與價值;
2.培養(yǎng)學生鍥而不舍的探索精神和嚴密思考的良好學習習慣。
3.使學生感受學習、探索發(fā)現(xiàn)的樂趣與成功感。
三、教學問題診斷
學生具備的認知基礎:
1.基本初等函數(shù)的圖象和性質(zhì);
2.一元二次方程的根和相應函數(shù)圖象與x軸的聯(lián)系;
3.將數(shù)與形相結(jié)合轉(zhuǎn)化的意識。
學生欠缺的實際能力:
1.主動應用數(shù)形結(jié)合思想解決問題的意識還不強;
2.將未知問題已知化,將復雜問題簡單化的化歸意識淡薄;
3.從直觀到抽象的概括總結(jié)能力還不夠;
4.概念的內(nèi)涵與外延的探究意識有待提高。
對本節(jié)課的教學,教材是利用一組一元二次方程和二次函數(shù)的關系來引入函數(shù)零點的。這樣處理,主要是想讓學生在原有二次函數(shù)的認知基礎上,使其知識得到自然的發(fā)生發(fā)展。理解了像二次函數(shù)這樣簡單的函數(shù)零點,再來理解其他復雜的函數(shù)零點就會容易一些。但學生對如何解一元二次方程以及二次函數(shù)的圖象早就熟練了,這樣的引入過程使學生感到平淡,激發(fā)不起他們的興趣,他們對零點的理解也只會浮于表面,也無法使其體會引入函數(shù)零點的必要性,理解不了方程根存在的本質(zhì)原因是零點的存在。
教材是通過由直觀到抽象的過程,才得到判斷函數(shù)y=f(x)在(a,b)內(nèi)有零點的一種條件的,如果不能有效地對該過程進行引導,容易出現(xiàn)學生被動接受,盲目記憶的結(jié)果,而喪失了對學生應用數(shù)學思想方法的意識進行培養(yǎng)的機會。
教材中零點存在性定理只表述了存在零點的條件,但對存在零點的個數(shù)并未多做說明,這就要求教師對該定理的內(nèi)涵和外延要有清晰的把握,引導學生探究出只存在一個零點的條件,否則學生對定理的內(nèi)容很容易心存疑慮。
四、本節(jié)課的教法特點以及預期效果分析
本節(jié)課教法的幾大特點總結(jié)如下:
1. 以問題為主線貫穿始終;
2. 精心設置引導性的語言放手讓學生探究;
3. 注重在引導學生探究問題解法的過程中滲透數(shù)學思想;
4. 在探究過程中引入新知識點,在引入新知識點后適時歸納總結(jié),進行探究階段性成果的應用。
由于所設置的主線問題具有很高的探究價值,所以預期學生熱情會很高,積極性調(diào)動起來,那整節(jié)課才能活起來;
由于為了更好地組織學生探究所設置的引導性語言,重在去挖掘?qū)W生內(nèi)心真實的想法和他們最真實體會到的困難,所以通過學生活動會更多地暴露他們在基礎知識掌握方面的缺憾,免不了要隨時糾正對過往知識的錯誤理解;
因為在探究過程中不斷滲透數(shù)學思想,學生對親身經(jīng)歷的解題方法就會有更深的體會,主動應用數(shù)學思想的意識在上升,對于主線問題也應該可以迎刃而解;
因為在探究過程中引入新知識點,學生對新知識產(chǎn)生的必要性會有更深刻的體會和認識,同時在新知識產(chǎn)生后,又適時地加以應用,學生對新知識的應用能力不斷提高。
看過" 高一數(shù)學《方程的根與函數(shù)的零點》說課稿 "的還看了: