国产成人v爽在线免播放观看,日韩欧美色,久久99国产精品久久99软件,亚洲综合色网站,国产欧美日韩中文久久,色99在线,亚洲伦理一区二区

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高一學(xué)習(xí)方法 > 高一數(shù)學(xué) > 高中數(shù)學(xué)的必修二的知識點(diǎn)分析

高中數(shù)學(xué)的必修二的知識點(diǎn)分析

時間: 夏萍1132 分享

高中數(shù)學(xué)的必修二的知識點(diǎn)分析

  數(shù)學(xué)的知識點(diǎn)雖然比較的有規(guī)律,但是也有很多需要學(xué)生記憶的,下面是學(xué)習(xí)啦小編給大家?guī)淼挠嘘P(guān)于高中必修二的數(shù)學(xué)的知識點(diǎn)的介紹,希望能夠幫助到大家。

  高中數(shù)學(xué)的必修二的知識點(diǎn)總結(jié)

  立體幾何初步

  1、柱、錐、臺、球的結(jié)構(gòu)特征

  (1)棱柱:

  幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.

  (2)棱錐

  幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方.

  (3)棱臺:

  幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

  (4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

  幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個矩形.

  (5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

  幾何特征:①底面是一個圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個扇形.

  (6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

  幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個弓形.

  (7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

  幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑.

  2、空間幾何體的三視圖

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、

  俯視圖(從上向下)

  注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度.

  3、空間幾何體的直觀圖——斜二測畫法

  斜二測畫法特點(diǎn):①原來與x軸平行的線段仍然與x平行且長度不變;

  ②原來與y軸平行的線段仍然與y平行,長度為原來的一半.

  4、柱體、錐體、臺體的表面積與體積

  (1)幾何體的表面積為幾何體各個面的面積的和.

  (2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)

  (3)柱體、錐體、臺體的體積公式

  直線與方程

  (1)直線的傾斜角

  定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°

  (2)直線的斜率

 ?、俣x:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.

  當(dāng)時,;當(dāng)時,;當(dāng)時,不存在.

  ②過兩點(diǎn)的直線的斜率公式:

  注意下面四點(diǎn):(1)當(dāng)時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

  (2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

  (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到.

  (3)直線方程

  ①點(diǎn)斜式:直線斜率k,且過點(diǎn)

  注意:當(dāng)直線的斜率為0°時,k=0,直線的方程是y=y1.

  當(dāng)直線的斜率為90°時,直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1.

 ?、谛苯厥剑?直線斜率為k,直線在y軸上的截距為b

 ?、蹆牲c(diǎn)式:()直線兩點(diǎn),

 ?、芙鼐厥剑?/p>

  其中直線與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為.

 ?、菀话闶剑?A,B不全為0)

  注意:各式的適用范圍特殊的方程如:

  平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

  (5)直線系方程:即具有某一共同性質(zhì)的直線

  (一)平行直線系

  平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

  (二)垂直直線系

  垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

  (三)過定點(diǎn)的直線系

  (ⅰ)斜率為k的直線系:,直線過定點(diǎn);

  (ⅱ)過兩條直線,的交點(diǎn)的直線系方程為

  (為參數(shù)),其中直線不在直線系中.

  (6)兩直線平行與垂直

  注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否.

  (7)兩條直線的交點(diǎn)

  相交

  交點(diǎn)坐標(biāo)即方程組的一組解.

  方程組無解;方程組有無數(shù)解與重合

  (8)兩點(diǎn)間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個點(diǎn)

  (9)點(diǎn)到直線距離公式:一點(diǎn)到直線的距離

  (10)兩平行直線距離公式

  在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解.

  圓的方程

  1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長為圓的半徑.

  2、圓的方程

  (1)標(biāo)準(zhǔn)方程,圓心,半徑為r;

  (2)一般方程

  當(dāng)時,方程表示圓,此時圓心為,半徑為

  當(dāng)時,表示一個點(diǎn);當(dāng)時,方程不表示任何圖形.

  (3)求圓方程的方法:

  一般都采用待定系數(shù)法:先設(shè)后求.確定一個圓需要三個獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,

  需求出a,b,r;若利用一般方程,需要求出D,E,F;

  另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置.

  高中數(shù)學(xué)必修二知識點(diǎn)總結(jié):直線與圓的位置關(guān)系:

  直線與圓的位置關(guān)系有相離,相切,相交三種情況:

  (1)設(shè)直線,圓,圓心到l的距離為,則有;;

  (2)過圓外一點(diǎn)的切線:①k不存在,驗證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

  (3)過圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

  4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.

  設(shè)圓,

  兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.

  當(dāng)時兩圓外離,此時有公切線四條;

  當(dāng)時兩圓外切,連心線過切點(diǎn),有外公切線兩條,內(nèi)公切線一條;

  當(dāng)時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

  當(dāng)時,兩圓內(nèi)切,連心線經(jīng)過切點(diǎn),只有一條公切線;

  當(dāng)時,兩圓內(nèi)含;當(dāng)時,為同心圓.

  注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線

  4、空間點(diǎn)、直線、平面的位置關(guān)系

  公理1:如果一條直線的兩點(diǎn)在一個平面內(nèi),那么這條直線是所有的點(diǎn)都在這個平面內(nèi).

  應(yīng)用:判斷直線是否在平面內(nèi)

  用符號語言表示公理1:

  公理2:如果兩個不重合的平面有一個公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線

  符號:平面α和β相交,交線是a,記作α∩β=a.

  符號語言:

  公理2的作用:

 ?、偎桥卸▋蓚€平面相交的方法.

  ②它說明兩個平面的交線與兩個平面公共點(diǎn)之間的關(guān)系:交線必過公共點(diǎn).

 ?、鬯梢耘袛帱c(diǎn)在直線上,即證若干個點(diǎn)共線的重要依據(jù).

  公理3:經(jīng)過不在同一條直線上的三點(diǎn),有且只有一個平面.

  推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面.

  公理3及其推論作用:①它是空間內(nèi)確定平面的依據(jù)②它是證明平面重合的依據(jù)

  公理4:平行于同一條直線的兩條直線互相平行

  空間直線與直線之間的位置關(guān)系

 ?、佼惷嬷本€定義:不同在任何一個平面內(nèi)的兩條直線

 ?、诋惷嬷本€性質(zhì):既不平行,又不相交.

 ?、郛惷嬷本€判定:過平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過該店的直線是異面直線

 ?、墚惷嬷本€所成角:作平行,令兩線相交,所得銳角或直角,即所成角.兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直.

  求異面直線所成角步驟:

  A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點(diǎn)選在特殊的位置上.B、證明作出的角即為所求角C、利用三角形來求角

  (7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補(bǔ).

  (8)空間直線與平面之間的位置關(guān)系

  直線在平面內(nèi)——有無數(shù)個公共點(diǎn).

  三種位置關(guān)系的符號表示:aαa∩α=Aa‖α

  (9)平面與平面之間的位置關(guān)系:平行——沒有公共點(diǎn);α‖β

  相交——有一條公共直線.α∩β=b

  5、空間中的平行問題

  (1)直線與平面平行的判定及其性質(zhì)

  線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行.

  線線平行線面平行

  線面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,

  那么這條直線和交線平行.線面平行線線平行

  (2)平面與平面平行的判定及其性質(zhì)

  兩個平面平行的判定定理

  (1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行

  (線面平行→面面平行),

  (2)如果在兩個平面內(nèi),各有兩組相交直線對應(yīng)平行,那么這兩個平面平行.

  (線線平行→面面平行),

  (3)垂直于同一條直線的兩個平面平行,

  兩個平面平行的性質(zhì)定理

  (1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行.(面面平行→線面平行)

  (2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行.(面面平行→線線平行)

  7、空間中的垂直問題

  (1)線線、面面、線面垂直的定義

 ?、賰蓷l異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直.

  ②線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直.

 ?、燮矫婧推矫娲怪保喝绻麅蓚€平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直.

  (2)垂直關(guān)系的判定和性質(zhì)定理

 ?、倬€面垂直判定定理和性質(zhì)定理

  判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面.

  性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行.

 ?、诿婷娲怪钡呐卸ǘɡ砗托再|(zhì)定理

  判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直.

  性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面.

  9、空間角問題

  (1)直線與直線所成的角

 ?、賰善叫兄本€所成的角:規(guī)定為.

 ?、趦蓷l相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角.

  ③兩條異面直線所成的角:過空間任意一點(diǎn)O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角.

  (2)直線和平面所成的角

 ?、倨矫娴钠叫芯€與平面所成的角:規(guī)定為.②平面的垂線與平面所成的角:規(guī)定為.

  ③平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個平面所成的角.

  求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”.

  在“作角”時依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點(diǎn)到面的垂線,

  在解題時,注意挖掘題設(shè)中兩個主要信息:(1)斜線上一點(diǎn)到面的垂線;(2)過斜線上的一點(diǎn)或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線.

  (3)二面角和二面角的平面角

 ?、俣娼堑亩x:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面.

  ②二面角的平面角:以二面角的棱上任意一點(diǎn)為頂點(diǎn),在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角.

 ?、壑倍娼牵浩矫娼鞘侵苯堑亩娼墙兄倍娼?

  兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角

 ?、芮蠖娼堑姆椒?/p>

  定義法:在棱上選擇有關(guān)點(diǎn),過這個點(diǎn)分別在兩個面內(nèi)作垂直于棱的射線得到平面角

  垂面法:已知二面角內(nèi)一點(diǎn)到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角

  解三角形

  (1)正弦定理和余弦定理

  掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題.

  (2)應(yīng)用

  能夠運(yùn)用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關(guān)的實際問題.

  數(shù)列

  (1)數(shù)列的概念和簡單表示法

 ?、倭私鈹?shù)列的概念和幾種簡單的表示方法(列表、圖象、通項公式).

  ②了解數(shù)列是自變量為正整數(shù)的一類函數(shù).

  (2)等差數(shù)列、等比數(shù)列

  ①理解等差數(shù)列、等比數(shù)列的概念.

  ②掌握等差數(shù)列、等比數(shù)列的通項公式與前項和公式.

  ③能在具體的問題情境中,識別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識解決相應(yīng)的問題.

 ?、芰私獾炔顢?shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系.

  不等式

  不等關(guān)系

  了解現(xiàn)實世界和日常生活中的不等關(guān)系,了解不等式(組)的實際背景.

  (2)一元二次不等式

  ①會從實際情境中抽象出一元二次不等式模型.

 ?、谕ㄟ^函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.

 ?、蹠庖辉尾坏仁?對給定的一元二次不等式,會設(shè)計求解的程序框圖.

  (3)二元一次不等式組與簡單線性規(guī)劃問題

 ?、贂膶嶋H情境中抽象出二元一次不等式組.

 ?、诹私舛淮尾坏仁降膸缀我饬x,能用平面區(qū)域表示二元一次不等式組.

 ?、蹠膶嶋H情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.

  (4)基本不等式:

 ?、倭私饣静坏仁降淖C明過程.

 ?、跁没静坏仁浇鉀Q簡單的最大(小)值問題圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)

點(diǎn)擊下頁查看更多高中必修一的數(shù)學(xué)的知識點(diǎn)

3784337