国产成人v爽在线免播放观看,日韩欧美色,久久99国产精品久久99软件,亚洲综合色网站,国产欧美日韩中文久久,色99在线,亚洲伦理一区二区

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 初中學(xué)習(xí)方法 > 初三學(xué)習(xí)方法 > 九年級數(shù)學(xué) >

九年級第二學(xué)期數(shù)學(xué)期中試題

時間: 詩盈1200 分享

  做數(shù)學(xué)題的時候我們要懂得怎樣學(xué)習(xí)才是最好的,今天小編給大家分享的是九年級數(shù)學(xué),歡迎大家參考哦

  下學(xué)期九年級數(shù)學(xué)期中試題

  一.選擇題(本大題共8小題,每小題3分,共24分. 在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)

  1. |﹣8|的相反數(shù)是 ( ▲ )

  A.﹣8 B. 8 C. D.

  2.下列計(jì)算中,正確的是 ( ▲ )

  A. B. C. D.

  3.如下圖所示的圖形是由7個完全相同的小正方體組成的立體圖形,則下面四個平面圖形中不是這個立體圖形的三視圖的是 ( ▲ )

  A. B. C. D.

  4.下列說法正確的是 ( ▲ )

  A.要了解人們對“低碳生活”的了解程度,宜采用普查方式

  B.隨機(jī)事件的概率為50%,必然事件的概率為100%

  C.一組數(shù)據(jù)3、4、5、5、6、7的眾數(shù)和中位數(shù)都是5

  D.若甲組數(shù)據(jù)的方差是0.168,乙組數(shù)據(jù)的方差是0.034,則甲組數(shù)據(jù)比乙組數(shù)據(jù)穩(wěn)定

  5.若一個圓錐的側(cè)面展開圖是一個半徑為10cm,圓心角為252°的扇形,則該圓錐的底面半徑為 ( ▲ )

  A.6cm B.7cm C.8cm D.10cm

  6.如圖,把一塊直角三角板的直角頂點(diǎn)放在直尺的一邊上,若∠1=35°,則∠2等于( ▲ )

  A.55° B.45° C.35° D.65°

  7.若關(guān)于x、y的二元一次方程組 的解滿足x+y<2,則a的取值范圍是( ▲ )

  A.a>2 B.a<2 C.a>4 D.a<4

  第3題 第6題 第8題

  8.已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,下列說法①a>0;②b2﹣4ac>0;③4a+2b+c>0;④c<0;⑤b>0.其中正確的有 ( ▲ )

  A.2個 B.3個 C.4個 D.5個

  二.填空題(本大題共10小題,每小題3分,共30分.)

  9.若分式 的值為0,則x= ▲ .

  10.把多項(xiàng)式2x2﹣8分解因式得: ▲ .

  11.在一個不透明的盒子中裝有n個規(guī)格相同的乒乓球,其中有2個黃色球,每次摸球前先將盒中的球搖勻,隨機(jī)摸出一個球記下顏色后再放回盒中,通過大量重復(fù)試驗(yàn)后發(fā)現(xiàn),摸到黃色球的頻率穩(wěn)定于0.2,那么可以推算出n大約是 ▲ .

  12.某公司2月份的利潤為160萬元,4月份的利潤250萬元,則平均每月的增長率為 ▲ .

  13.如圖,A(4,0),B(3,3),以AO,AB為邊作平行四邊形OABC,則經(jīng)過C點(diǎn)的反比例函數(shù)的表達(dá)式為 ▲ .

  14.如圖,點(diǎn)E(0,3),O(0,0),C(4,0)在⊙A上,BE是⊙A上的一條弦.則sin∠OBE=

  ▲ .

  第13題 第14題 第15題

  15.如圖,△ABC三個頂點(diǎn)的坐標(biāo)分別為A(2,2),B(4,2),C(6,4),以原點(diǎn)O為位似中心,將△ABC縮小為原來的一半,則線段AC的中點(diǎn)P變換后在第一象限對應(yīng)點(diǎn)的坐標(biāo)為 ▲ .

  16.如下一組數(shù): ,﹣ , ,﹣ ,…,請用你發(fā)現(xiàn)的規(guī)律,猜想第2016個數(shù)為 ▲ .

  17.甲、乙兩工程隊(duì)分別同時開挖兩條600米長的管道,所挖管道長度y(米)與挖掘時間x(天)之間的關(guān)系如圖所示,則下列說法中:①甲隊(duì)每天挖100米;②乙隊(duì)開挖兩天后,每天挖50米;

 ?、奂钻?duì)比乙隊(duì)提前3天完成任務(wù);④當(dāng)x=2或6時,甲乙兩隊(duì)所挖管道長度都相差100米.正確的有 ▲ .(在橫線上填寫正確的序號)

  第17題 第18題

  18.如圖,已知CO1是△ABC的中線,過點(diǎn)O1作O1E1∥AC交BC于點(diǎn)E1,連接AE1交CO1于點(diǎn)O2;過點(diǎn)O2作O2E2∥AC交BC于點(diǎn)E2,連接AE2交CO1于點(diǎn)O3;過點(diǎn)O3作O3E3∥AC交BC于點(diǎn)E3,…,如此繼續(xù),可以依次得到點(diǎn)O4,O5,…,On和點(diǎn)E4,E5,…,En.則OnEn=

  ▲ AC.(用含n的代數(shù)式表示)

  三.解答題(本大題共10小題,共96分.解答時應(yīng)寫出文字說明、推理過程或演算步驟)

  19.(8分)計(jì)算:﹣14+(2016﹣π)0﹣(﹣ )﹣1+|1﹣ |﹣2sin60°.

  20.(8分)先化簡,再求值:(x﹣1)÷( ﹣1),其中x為方程x2+3x+2=0的根.

  21.(8分)如圖所示,可以自由轉(zhuǎn)動的轉(zhuǎn)盤被3等分,指針落在每個扇形內(nèi)的機(jī)會均等.

  (1)現(xiàn)隨機(jī)轉(zhuǎn)動轉(zhuǎn)盤一次,停止后,指針指向2的概率為 ▲ .

  (2)小明和小華利用這個轉(zhuǎn)盤做游戲,若采用下列游戲規(guī)則,你認(rèn)為對雙方公平嗎?請用列表或畫樹狀圖的方法說明理由.

  游戲規(guī)則:隨機(jī)轉(zhuǎn)動轉(zhuǎn)盤兩次,停止后,指針各指向一個數(shù)字,若兩數(shù)之積為偶數(shù),則小明勝;否則小華勝.

  22.(8分)某高校學(xué)生會發(fā)現(xiàn)同學(xué)們就餐時剩余飯菜較多,浪費(fèi)嚴(yán)重,于是準(zhǔn)備在校內(nèi)倡導(dǎo)“光盤行動”,讓同學(xué)們珍惜糧食,為了讓同學(xué)們理解這次活動的重要性,校學(xué)生會在某天午餐后,隨機(jī)調(diào)查了部分同學(xué)就餐飯菜的剩余情況,并將結(jié)果統(tǒng)計(jì)后繪制成了如圖所示的不完整的統(tǒng)計(jì)圖.

  (1)這次被調(diào)查的同學(xué)共有 ▲ .名;

  (2)補(bǔ)全條形統(tǒng)計(jì)圖;

  (3)計(jì)算在扇形統(tǒng)計(jì)圖中剩大量飯菜所對應(yīng)扇形圓心角的度數(shù);

  (4)校學(xué)生會通過數(shù)據(jù)分析,估計(jì)這次被調(diào)查的所有學(xué)生一餐浪費(fèi)的食物可以供200人用一餐.據(jù)此估算,該校20000名學(xué)生一餐浪費(fèi)的食物可供多少人食用一餐?

  23.(10分)某校九年級數(shù)學(xué)興趣小組為了測得該校地下停車場的限高CD,在課外活動時間測得下列數(shù)據(jù):如圖,從地面E點(diǎn)測得地下停車場的俯角為30°,斜坡AE的長為16米,地面B點(diǎn)(與E點(diǎn)在同一個水平線)距停車場頂部C點(diǎn)(A、C、B在同一條直線上且與水平線垂直)1.2米.試求該校地下停車場的高度AC及限高CD(結(jié)果精確到0.1米, =1.732).

  24.(10分) 如圖,⊙O是△ABC的外接圓,AB是直徑,作OD∥BC與過點(diǎn)A的切線交于點(diǎn)D,連接DC并延長交AB的延長線于點(diǎn)E.

  (1)求證:DE是⊙O的切線;

  (2)若AE=6,CE=2 ,求線段CE、BE與劣弧BC所圍成的圖形面積.(結(jié)果保留根號和π)

  25.(10分)大華服裝廠生產(chǎn)一件秋冬季外套需面料1.2米,里料0.8米,已知面料的單價(jià)比里料的單價(jià)的2倍還多10元,一件外套的布料成本為76元.

  (1)求面料和里料的單價(jià);

  (2)該款外套9月份投放市場的批發(fā)價(jià)為150元/件,出現(xiàn)購銷兩旺態(tài)勢,10月份進(jìn)入批發(fā)淡季,廠方?jīng)Q定采取打折促銷.已知生產(chǎn)一件外套需人工等固定費(fèi)用14元,為確保每件外套的利潤不低于30元.

 ?、僭O(shè)10月份廠方的打折數(shù)為m,求m的最小值;(利潤=銷售價(jià)﹣布料成本﹣固定費(fèi)用)

 ?、谶M(jìn)入11月份以后,銷售情況出現(xiàn)好轉(zhuǎn),廠方?jīng)Q定對VIP客戶在10月份最低折扣價(jià)的基礎(chǔ)上實(shí)施更大的優(yōu)惠,對普通客戶在10月份最低折扣價(jià)的基礎(chǔ)上實(shí)施價(jià)格上浮.已知對VIP客戶的降價(jià)率和對普通客戶的提價(jià)率相等,結(jié)果一個VIP客戶用9120元批發(fā)外套的件數(shù)和一個普通客戶用10080元批發(fā)外套的件數(shù)相同,求VIP客戶享受的降價(jià)率.

  26.(10分)探索研究:已知:△ABC和△CDE都是等邊三角形.

  (1)如圖1,若點(diǎn)A、C、E在一條直線上時,我們可以得到結(jié)論:線段AD與BE的數(shù)量關(guān)系為: ▲ ,線段AD與BE所成的銳角度數(shù)為 ▲ °;

  (2)如圖2,當(dāng)點(diǎn)A、C、E不在一條直線上時,請證明(1)中的結(jié)論仍然成立;

  靈活運(yùn)用:

  如圖3,某廣場是一個四邊形區(qū)域ABCD,現(xiàn)測得:AB=60m,BC=80m,且∠ABC=30°,∠DAC=∠DCA=60°,試求水池兩旁B、D兩點(diǎn)之間的距離.

  27.(12分) 在四邊形ABCD中,對角線AC、BD相交于點(diǎn)O,將△COD繞點(diǎn)O按逆時針方向旋轉(zhuǎn)得到△C1OD1,旋轉(zhuǎn)角為θ(0°<θ<90°),連接AC1、BD1,AC1與BD1交于點(diǎn)P.

  (1)如圖1,若四邊形ABCD是正方形.

 ?、偾笞C:△AOC1≌△BOD1.

 ?、谡堉苯訉懗鯝C1 與BD1的位置關(guān)系.

  (2)如圖2,若四邊形ABCD是菱形,AC=6,BD=8,設(shè)AC1=kBD1.判斷AC1與BD1的位置關(guān)系,說明理由,并求出k的值.

  (3)如圖3,若四邊形ABCD是平行四邊形,AC=6,BD=12,連接DD1,設(shè)AC1=kBD1.直接寫出k的值和AC12+(kDD1)2的值.

  28.(12分)如圖,經(jīng)過原點(diǎn)的拋物線y=﹣x2+2mx(m>0)與x軸的另一個交點(diǎn)為A.過點(diǎn)P(1,m)作直線PM⊥x軸于點(diǎn)M,交拋物線于點(diǎn)B.記點(diǎn)B關(guān)于拋物線對稱軸的對稱點(diǎn)為C(B、C不重合).連接CB,CP.

  (1)當(dāng)m=3時,求點(diǎn)A的坐標(biāo)及BC的長;

  (2)當(dāng)m>1時,連接CA,問m為何值時CA⊥CP?

  (3)過點(diǎn)P作PE⊥PC且PE=PC,問是否存在m,使得點(diǎn)E落在坐標(biāo)軸上?若存在,求出所有滿足要求的m的值,并求出相對應(yīng)的點(diǎn)E坐標(biāo);若不存在,請說明理由.

  初三數(shù)學(xué)參考答案

  1-8 ACBC BADB

  9.1 10. 2(x+2)(x﹣2) 11.10 12.25% 13. y=﹣

  14. 15. (2, ) 16. 17. ①②④ 18.

  19. 解:原式=﹣1+1﹣(﹣2)+ ﹣1﹣2×

  =﹣1+1+2+ ﹣1﹣

  =1.(8分)

  20. 解:原式=(x﹣1)÷

  =(x﹣1)÷

  =(x﹣1)×

  =﹣x﹣1.(4分)

  由x為方程x2+3x+2=0的根,解得x=﹣1或x=﹣2.(2分)

  當(dāng)x=﹣1時,原式無意義,所以x=﹣1舍去;

  當(dāng)x=﹣2時,原式=﹣(﹣2)﹣1=2﹣1=1.(2分)

  21. 解:(1)根據(jù)題意得:隨機(jī)轉(zhuǎn)動轉(zhuǎn)盤一次,停止后,指針指向3的概率為 ;

  故答案為: ;(2分)

  (2)列表得:

  1 2 3

  1 (1,1) (2,1) (3,1)

  2 (1,2) (2,2) (3,2)

  3 (1,3) (2,3) (3,3)

  所有等可能的情況有9種,其中兩數(shù)之積為偶數(shù)的情況有5種,之積為奇數(shù)的情況有4種,

  ∴P(小明獲勝)= ,P(小華獲勝)= ,

  ∵ > ,

  ∴該游戲不公平.(6分)

  22. 解:(1)被調(diào)查的同學(xué)的人數(shù)是400÷40%=1000(名);(2分)

  (2)剩少量的人數(shù)是1000﹣400﹣250﹣150=200(名),(2分)

  ;

  (3)在扇形統(tǒng)計(jì)圖中剩大量飯菜所對應(yīng)扇形圓心角的度數(shù)是:360°× =54°;(2分)

  (4) ×200=4000(人)

  答:校20000名學(xué)生一餐浪費(fèi)的食物可供4000人食用一餐.(2分)

  23. 解:由題意得,AB⊥EB,CD⊥AE,∴∠CDA=∠EBA=90°,

  ∵∠E=30°,∴AB= AE=8米,

  ∵BC=1.2米,∴AC=AB﹣BC=6.8米,(5分)

  ∵∠DCA=90°﹣∠A=30°,∴CD=AC×cos∠DCA=6.8× ≈5.9米.(4分)

  答:該校地下停車場的高度AC為6.8米,限高CD約為5.9米.(1分)

  24. 解:(1)連結(jié)OC,如圖,

  ∵AD為⊙O的切線,∴AD⊥AB,∴∠BAD=90°,

  ∵OD∥BC,∴∠1=∠3,∠2=∠4,

  ∵OB=OC,∴∠3=∠4,∴∠1=∠2,

  在△OCD和△OAD中,

  ,∴△AOD≌△COD(SAS); ∴∠OCD=∠OAD=90°,

  ∴OC⊥DE,∴DE是⊙O的切線;(5分)

  (2)設(shè)半徑為r,則OE=AE﹣OA=6﹣r,OC=r,在Rt△OCE中,∵OC2+CE2=OE2,

  ∴r2+(2 )2=(6﹣r)2,解得r=2,∵tan∠COE= = = ,∴∠COE=60°,

  ∴S陰影部分=S△COE﹣S扇形BOC= ×2×2 ﹣ =2 ﹣ π.(5分)

  25. 解:(1)設(shè)里料的單價(jià)為x元/米,面料的單價(jià)為(2x+10)元/米.

  根據(jù)題意得:0.8x+1.2(2x+10)=76.解得:x=20.2x+10=2×20+10=50.

  答:面料的單價(jià)為50元/米,里料的單價(jià)為20元/米.(3分)

  (2)設(shè)打折數(shù)為m.

  根據(jù)題意得:150× ﹣76﹣14≥30.解得:m≥8.∴m的最小值為8.

  答:m的最小值為8.(3分)

  (3)150×0.8=120元.

  設(shè)vip客戶享受的降價(jià)率為x.

  根據(jù)題意得: ,解得:x=0.05

  經(jīng)檢驗(yàn)x=0.05是原方程的解.

  答;vip客戶享受的降價(jià)率為5%.(4分)

  26. 解:(1)如圖1,

  ∵△ABC和△CDE都是等邊三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,

  ∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,

  在△ACD和△BCE中,

  ,

  ∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC,

  由三角形的外角性質(zhì),∠DPE=∠PEA+∠DAC,

  ∠DCE=∠ADC+∠DAC,∴∠DPE=∠DCE=60°;

  故答案為:相等,60;(2+2分)

  (2)如圖2,

  ∵△ABC和△CDE都是等邊三角形,

  ∴AC=BC,CD=CE,∠ACB=∠DCE=60°,

  ∴∠ACB+∠BCD=∠DCE+∠BCD,

  即∠ACD=∠BCE,

  在△ACD和△BCE中,

  ,∴△ACD≌△BCE(SAS),∴AD=BE,∠DAC=∠EBC,

  ∴∠BPA=180°﹣∠ABP﹣∠BAP=180°﹣∠ABC﹣∠BAC=60°.(4分)

  (3)如圖3,以AB為邊在△ABC外側(cè)作等邊△ABE,連接CE.

  由(2)可得:BD=CE

  ∴∠EBC=60°+30°=90°,

  ∴△EBC是直角三角形

  ∵EB=60m BC=80m,

  ∴CE= = =100(m).

  ∴水池兩旁B、D兩點(diǎn)之間的距離為100m.(4分)

  27. 解:(1)AC1=BD1,AC1⊥BD1;

  理由:如圖1,∵四邊形ABCD是正方形,

  ∴OC=OA=OD=OB,AC⊥BD,∴∠AOB=∠COD=90°,

  ∵△COD繞點(diǎn)O按逆時針方向旋轉(zhuǎn)得到△C1OD1,

  ∴OC1=OC,OD1=OD,∠COC1=∠DOD1,

  ∴OC1=OD1,∠AOC1=∠BOD1=90°+∠AOD1,

  在△AOC1和△BOD1中 ,

  ∴△AOC1≌△BOD1(SAS);(3分)

  ∴AC1=BD1,∵∠AOB=90°,∴∠OAB+∠ABP+∠OBD1=90°,

  ∴∠OAB+∠ABP+∠OAC1=90°,∴∠APB=90°,則AC1⊥BD1;

  故AC1 與BD1的數(shù)量關(guān)系是:AC1=BD1;AC1 與BD1的位置關(guān)系是:AC1⊥BD1;(1分)

  (2)AC1= BD1,AC1⊥BD1.

  理由:∵四邊形ABCD是菱形,∴OC=OA= AC,OD=OB= BD,AC⊥BD.

  ∵△C1OD1由△COD繞點(diǎn)O旋轉(zhuǎn)得到,∴O C1=OC,O D1=OD,∠CO C1=∠DO D1.

  ∴O C1=OA,O D1=OB,∠AO C1=∠BO D1,∴ = .

  ∴ = .∴△ AO C1∽△BOD1.∴∠O AC1=∠OB D1.

  又∵∠AOB=90°,∴∠O AB+∠ABP+∠OB D1=90°.

  ∴∠O AB+∠ABP+∠O AC1=90°.∴∠APB=90°.∴AC1⊥BD1.

  ∵△AO C1∽△BOD1,

  ∴ = = = = = .即AC1= BD1,AC1⊥BD1.(4分)

  (3)如圖3,與(2)一樣可證明△AOC1∽△BOD1,

  ∴ = = = ,∴k= ;(2分)

  ∵△COD繞點(diǎn)O按逆時針方向旋轉(zhuǎn)得到△C1OD1,

  ∴OD1=OD,而OD=OB,∴OD1=OB=OD,

  ∴△BDD1為直角三角形,在Rt△BDD1中,

  BD12+DD12=BD2=144,∴(2AC1)2+DD12=144,

  ∴AC12+(kDD1)2 = (2分)

  28. 解:(1)當(dāng)m=3時,y=﹣x2+6x令y=0得﹣x2+6x=0∴x1=0,x2=6,∴A(6,0)

  當(dāng)x=1時,y=5∴B(1,5)∵拋物線y=﹣x2+6x的對稱軸為直線x=3又∵B,C關(guān)于對稱軸對稱∴BC=4.(3分)

  (2)連接AC,過點(diǎn)C作CH⊥x軸于點(diǎn)H(如圖1)由已知得∠ACP=∠BCH=90°

  ∴∠ACH=∠PCB, 又∵∠AHC=∠PBC=90°∴△ACH∽△PCB,∴ ,

  ∵拋物線y=﹣x2+2mx的對稱軸為直線x=m,其中m>1,

  又∵B,C關(guān)于對稱軸對稱,∴BC=2(m﹣1),∵B(1,2m﹣1),P(1,m),∴BP=m﹣1,又∵A(2m,0),C(2m﹣1,2m﹣1),∴H(2m﹣1,0),

  ∴AH=1,CH=2m﹣1,∴ ,∴m= .(4分)

  (3)∵B,C不重合,∴m≠1,

  (I)當(dāng)m>1時,BC=2(m﹣1),PM=m,BP=m﹣1,

  (i)若點(diǎn)E在x軸上(如圖1),

  ∵∠CPE=90°,∴∠MPE+∠BPC=∠MPE+∠MEP=90°,PC=EP,

  在△BPC和△MEP中, ,∴△BPC≌△MEP,∴BC=PM,

  ∴2(m﹣1)=m,∴m=2,此時點(diǎn)E的坐標(biāo)是(2,0);(1分)

  (ii)若點(diǎn)E在y軸上(如圖2),

  過點(diǎn)P作PN⊥y軸于點(diǎn)N,易證△BPC≌△NPE,∴BP=NP=OM=1,

  ∴m﹣1=1,∴m=2,此時點(diǎn)E的坐標(biāo)是(0,4);(1分)

  (II)當(dāng)0

  (i)若點(diǎn)E在x軸上(如圖3),易證△BPC≌△MEP,

  ∴BC=PM,∴2(1﹣m)=m,

  ∴m= ,此時點(diǎn)E的坐標(biāo)是( ,0);(1分)

  (ii)若點(diǎn)E在y軸上(如圖4),

  過點(diǎn)P作PN⊥y軸于點(diǎn)N,易證△BPC≌△NPE,∴BP=NP=OM=1,

  ∴1﹣m=1,∴m=0(舍去),(2分)

  綜上所述,當(dāng)m=2時,點(diǎn)E的坐標(biāo)是(2,0)或(0,4),當(dāng)m= 時,點(diǎn)E的坐標(biāo)是( ,0).

  九年級數(shù)學(xué)下冊期中試題帶答案

  一、選擇題(本大題共10小題,每小題3分,共30分)

  1.3的相反數(shù)是 ( ▲ )

  A. B. C.3 D.

  2.下列運(yùn)算正確的是 ( ▲ )

  A. B. C. D.

  3.中國國家圖書館是亞洲最大的圖書館,截止到今年初館藏圖書達(dá)3119萬冊,其中古籍善本約有2000000冊.2000000用科學(xué)記數(shù)法可以表示為 ( ▲ )

  A. B. C. D.

  4.如圖,在⊙O中,弦AB∥CD,若∠ABC=40°,則∠BOD等于 ( ▲ )

  A.20° B.40° C.50° D.80°

  5.如果一個多邊形的內(nèi)角和是外角和的3倍,那么這個多邊形是 ( ▲ )

  A.五邊形 B.六邊形 C.七邊形 D.八邊形

  6.如圖,△ABC中,D,E兩點(diǎn)分別在AB,AC邊上,且DE∥BC,如果 ,AC=6,那么AE的長為 ( ▲ )

  A. 3 B. 4 C. 9 D. 12

  7.某居民小區(qū)開展節(jié)約用電活動,該小區(qū)100戶家庭4月份的節(jié)電情況如下表所示.

  節(jié)電量(千瓦時) 20 30 40 50

  戶數(shù)(戶) 20 30 30 20

  那么4月份這100戶家庭的節(jié)電量(單位:千瓦時)的平均數(shù)是 ( ▲ )

  A. 35 B. 26 C. 25 D. 20

  8.一個布袋里有6個只有顏色不同的球,其中2個紅球,4個白球,從布袋里任意摸出1個球,則摸出的球是紅球的概率為 ( ▲ )

  A. B. C. D.

  9.已知圓錐的底面半徑為1cm,母線長為3cm,則其全面積為 ( ▲ )

  A.πcm2 B.3πcm2 C.4πcm2 D.7πcm2

  10.如圖,在平面直角坐標(biāo)系xOy中,A(-2,0),B(0,2),⊙O的半徑為1,點(diǎn)C為⊙O上一動點(diǎn),過點(diǎn)B作BP⊥直線AC,垂足為點(diǎn)P,則P點(diǎn)縱坐標(biāo)的最大值為( ▲ )

  A. B. C.2 D.

  二、填空題(本大題共8小題,每小題2分,共16分)

  11.在函數(shù) 中,自變量x的取值范圍是 ▲ .

  12.因式分解: ▲ .

  13.反比例函數(shù)y= k x 的圖象經(jīng)過點(diǎn)(1,6)和(m,-3),則m= ▲ .

  14.已知:如圖,在△ABC中,點(diǎn)D為BC上一點(diǎn),CA=CD,CF平分∠ACB,交AD于點(diǎn)F,點(diǎn)E為AB的中點(diǎn).若EF=2,則BD = ▲ .

  15.如圖,MN分別交AB、CD于點(diǎn)E、F,AB∥CD,∠AEN=80°,則∠DFN為____▲_______.

  16.如圖,在菱形ABCD中,AC=6,BD=8,則菱形ABCD的面積為_______▲_____.

  17.如圖,△ABC中,∠ACB=90°,AB=8cm,D是AB的中點(diǎn).現(xiàn)將△BCD沿BA方向平移1cm,得到△EFG,F(xiàn)G交AC于H,則GH的長等于  ▲  cm.

  18.如圖是反比例函數(shù) 和 在第一象限的圖像,等腰直角△ABC的直角頂點(diǎn)B在 上,頂點(diǎn)A在 上,頂點(diǎn)C在x軸上,AB∥x軸,則CD:AD= ▲ .

  三、解答題(本大題共10小題,共84分)

  19.(本題滿分8分)

  計(jì)算:(1) ; (2) .

  20.(本題滿分8分)

  (1)解方程:x2-3x-4=0; (2)解不等式組:

  21.(本題滿分6分)

  如圖,□ABCD中,點(diǎn)E、F分別在AB、CD上,且BE=DF,EF與AC相交于點(diǎn)P,

  求證:PA=PC.

  22.(本題滿分8分)在某校九(1)班組織了江陰歡樂義工活動,就該班同學(xué)參與公益活動情況作了一次調(diào)查統(tǒng)計(jì).如圖是一同學(xué)通過收集數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)圖中提供的信息,解答下列問題:

  (1)該班共有___▲___名學(xué)生,其中經(jīng)常參加公益活動的有___▲__名學(xué)生;

  (2)將頻數(shù)分布直方圖補(bǔ)充完整;

  (3)若該校九年級有900名學(xué)生,試估計(jì)該年級從不參加的人數(shù).若我市九年級有15000名學(xué)生,能否由此估計(jì)出我市九年級學(xué)生從不參加的人數(shù),為什么?

  (4)根據(jù)統(tǒng)計(jì)數(shù)據(jù),你想對你的同學(xué)們說些什么?

  23.(本題滿分7分)

  一不透明的袋子中裝有3個大小、質(zhì)地都相同的乒乓球,球面上分別標(biāo)有數(shù)字1、2、3.先

  從袋中任意取出一球后放回,攪勻后再從袋中任意取出一球.若把兩次號碼之積作為一個

  兩位數(shù)的十位上的數(shù)字,兩次號碼之和作為這個兩位數(shù)的個位上的數(shù)字,求所組成的兩位

  數(shù)是偶數(shù)的概率.(請用“畫樹狀圖”或“列表”的方法給出分析過程,并寫出結(jié)果)

  24.(本題滿分9分)

  如圖,將正方形ABCD從AP的位置(AB與AP重合)繞著點(diǎn)A逆時針方向旋轉(zhuǎn)∠ 的度數(shù),作點(diǎn)B關(guān)于直線AP的對稱點(diǎn)E,連接BE、DE,直線DE交直線AP于點(diǎn)F。

  (1)如圖1,若 ,求∠ADF的度數(shù);

  (2)如圖2,若 ,探索線段AB、FE、FD之間的數(shù)量關(guān)系,并證明;

  (3)如圖3,若 ,(2)中的結(jié)論還成立嗎?并說明理由。

  25.(本題滿分9分)

  現(xiàn)在互聯(lián)網(wǎng)越來越普及,網(wǎng)上購物的人也越來越多,訂購的商品往往通過快遞送達(dá).淘寶網(wǎng)上某“四皇冠”級店鋪率先與“快樂童年”童裝廠取得聯(lián)系,經(jīng)營該廠家某種型號的童裝.根據(jù)第一周的銷售記錄,該型號童裝每天的售價(jià)x(元/件)與當(dāng)日的銷售量y(件)的相關(guān)數(shù)據(jù)如下表:

  每件的銷售價(jià)x(元/件) 200 190 180 170 160 150 140

  每天的銷售量y(件) 80 90 100 110 120 130 140

  已知該型號童裝每件的進(jìn)價(jià)是70元,同時為吸引顧客,該店鋪承諾,每件服裝的快遞費(fèi)10元由賣家承擔(dān).

  (1)請觀察題中的表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識,求第一周銷售中,y與x的函數(shù)關(guān)系式;

  (2)設(shè)第一周每天的贏利為w元,求w關(guān)于x的函數(shù)關(guān)系式,并求出每天的售價(jià)為多少元時,每天的贏利最大?最大贏利是多少?

  (3)從第二周起,該店鋪一直按第(2)中的最大日盈利的售價(jià)進(jìn)行銷售.但進(jìn)入第三周后,網(wǎng)上其他購物店也陸續(xù)推出該型號童裝,因此第三、四周該店鋪每天的售價(jià)都比第二周下降了m%,銷售量也比第二周下降了0.5m%(m<20);第五周開始,廠家給予該店鋪優(yōu)惠,每件的進(jìn)價(jià)降低了16元;該店鋪在維持第三、四周的銷售價(jià)和銷售量的基礎(chǔ)上,同時決定每件童裝的快遞費(fèi)由買家自付,這樣,第五周的贏利相比第二周的贏利增加了2%,請估算整數(shù)m的值.

  26.(本題滿分10分)

  我們定義:有一組對角相等而另一組對角不相等的凸四邊形叫做“等對角四邊形”.

  凸四邊形就是沒有角度大于180°的四邊形,把四邊形的任何一邊向兩方延長,其他各邊都在延長所得直線的同一旁,這樣的四邊形叫做凸四邊形.

  (1)已知:若四邊形ABCD是“等對角四邊形”,∠A=70°,∠B=80°.求∠C、∠D的度數(shù).

  (2)如圖1,在Rt△ACB中,∠C=90°,CD為斜邊AB邊上的中線,過點(diǎn)D作DE⊥CD交AC于點(diǎn)E,請說明:四邊形BCED是“等對角四邊形”.

  (3)如圖2,在Rt△ACB中,∠C=90°,AC=4,BC=3,CD平分∠ACB,點(diǎn)E在直線AC上,以點(diǎn)B、C、E、D為頂點(diǎn)構(gòu)成的的四邊形為“等對角四邊形”,求線段AE的長.

  27.(本題滿分9分)

  小明所在的數(shù)學(xué)興趣小組研究一個課題“如何根據(jù)條件唯一的作出一個三角形”?研究后他們發(fā)現(xiàn)這與“如何作一個三角形與已知三角形全等”是一樣的,如果提供的條件可以證明兩個三角形全等,那么這些條件下作出的三角形肯定是唯一的。

  (1)如果下列條件肯定可以作三角形,那么其中不唯一的是 ( ▲ )

  A:已知兩條邊和夾角 B:已知三邊 C:已知兩角和夾邊 D:已知兩條邊和一邊的對角

  (2)如果線段AB=4厘米,AC=5厘米,AD=3厘米,以AB、AC作為△ABC兩邊,AD為BC邊上的高,請你設(shè)計(jì)一個方案作出滿足如上條件的△ABC,并簡要說明理由;

  (3)如果將(2)中AD改為BC邊上的角平分線,請你同樣設(shè)計(jì)一個方案作出滿足條件的△ABC,并簡要說明理由.

  28.(本題滿分10分)

  如圖①,A ,AB⊥y軸于B點(diǎn),點(diǎn)R從原點(diǎn)O出發(fā), 沿y軸正方向勻速運(yùn)動,同時點(diǎn)Q從點(diǎn)A出發(fā),沿線段AB向點(diǎn)B以相同的速度勻速運(yùn)動,當(dāng)點(diǎn)Q到達(dá)點(diǎn)B時,兩點(diǎn)同時停止運(yùn)動,設(shè)運(yùn)動的時間為t秒.

  (1)點(diǎn)B的坐標(biāo)為____________;

  (2)過R點(diǎn)作RP⊥OA交x軸于點(diǎn)P,當(dāng)點(diǎn)R在OB上運(yùn)動時,△BRQ的面積S(平方單位)與時間t(秒)之間的函數(shù)圖像為拋物線的一部分,如圖②,求點(diǎn)R的運(yùn)動速度;

  (3)如果點(diǎn)R、Q保持(2)中的速度不變,在整個運(yùn)動過程中,設(shè)△PRQ與△OAB的重疊部分的面積為y,請求出y關(guān)于t的函數(shù)關(guān)系式.

  初三數(shù)學(xué)參考答案:

  1.D

  2.D

  3.B

  4.D

  5.D

  6.B

  7.A

  8.D

  9.C

  10.B

  11.

  12.

  13.

  14.4

  15.100°

  16.24

  17.3

  18.

  19.(1) -----過程3分,答案1分

  (2) ----過程2分,答案2分

  20.(1) ----過程2分,答案2分

  (2) ----過程2分,答案2分

  21. 在□ABCD中,AB=CD,∵BE=DF,∴AE=FC--------2分

  又∵AB∥ DC,∴∠EAP=∠FCP,∠AEP=∠CFP-------4分

  ∴△AEP≌△CFP,∴PA=PC--------------------------------6分

  22. (1)50……………1分 10………………2分

  (2)從不參加的有25人,經(jīng)常參加的有10人,圖略…………………………4分

  (3)∵九(1)班從不參加的人數(shù)所占比例為:50%,

  ∴該年級學(xué)生從不參加的人數(shù)為:900×50%=450(人),

  ∴估計(jì)該校九年級學(xué)生從不參加的人數(shù)約有450人,……………………6分

  不能由此估計(jì)我市九年級學(xué)生從不參加的人數(shù),因?yàn)榇藰颖静痪叽硇?………7分

  (4)略(正能量的話給分)………………………… ………………………8分

  23. 畫樹狀圖得:

  --------------------4分

  ∵共有9種等可能的結(jié)果:12,23,34,23,44,65,34,65,96,所組成的兩位數(shù)是偶數(shù)的有:12,34,44,34,96-----------------6分

  ∴P(所組成的兩位數(shù)是偶數(shù))= ----------7分

  24.(1)30°----------3分

  (2) ,證明略---------------6分

  (3)(2)中的結(jié)論成立,理由略-------------------9分

  25. (1)設(shè)y=kx+b

  由題得: ,解得 ,

  ∴y=﹣x+280,

  驗(yàn)證:當(dāng)x=180時,y=100;當(dāng)x=170時,y=110;

  其他各組值也滿足函數(shù)關(guān)系式;故y與x的函數(shù)關(guān)系式為y=﹣x+280------------------2分

  (2)w=xy﹣70y﹣10y=(x﹣80)(﹣x+280)=﹣x2+360x﹣22400=﹣(x﹣180)2+10000

  因?yàn)椹?<0,所以拋物線開口向下,所以當(dāng)x=180時,w最大為10000,

  即每件的售價(jià)為180元時,每天的贏利最大為10000元------------------------------------5分

  (3)根據(jù)題意得:180(1﹣m%)•700(1﹣0.5m%)﹣54(1﹣0.5m%)×700=7×10000×1.02,

  設(shè)t=m%,則原方程可化為:180(1﹣t)(1﹣0.5t)﹣54(1﹣0.5t)=102

  化簡得:30t2﹣81t+8=0,△=(﹣81)2﹣4×30×8=5601 , , ,

  所以m≈260或m≈10.2,因?yàn)閙<20,所以m≈10,

  答:m的整數(shù)值為10.--------------------------------------------------------------------------9分

  26.(1)①∠C=70°,∠D=140°;②∠C=130°,∠D=80°-----------2分

  (2)證明∠CED=∠B,∠ECB≠∠EDB-----------------------6分

  (3)①AE=1 ②AE= ③AE= ④ AE=25------------------10分

  27.(1)D------------2分

  (2)滿足條件的三角形有兩個,方案,理由略--------------6分

  (3)滿足條件的三角形有一個,方案,理由略--------------9分

  28.(1)B --------------------2分

  (2)2--------------------4分

  (3)① , ---------------------6分

 ?、?, -----------------------8分

 ?、?, ------------------------10分

  春九年級下學(xué)期數(shù)學(xué)期中試題

  一、選擇題(本大題共12小題,每小題4分,共48分)

  1.下列四個數(shù)中,在-2到0之間的數(shù)是( )

  A. 1 B. -1 C. 3 D. -3

  2. 下列計(jì)算正確的是(   )

  A.(a5)2=a10 B. x16÷x4=x4 C. 2a2+3a2=6a4 D. b3•b3=2b3

  3. 已知∠α=32°,則∠α的補(bǔ)角為( )

  A.58° B.68° C.148° D.168°

  4. 若分式 的值為0,則 的值為( )

  A.2或-1 B.0 C.-1 D. 2

  5. 如圖,已知AB∥CD,直線 分別交AB、CD于點(diǎn)E、F,EG平分∠BEF,若∠EFG=40°,則∠EGF的度數(shù)是 ( )A.60° B.70° C.80° D.90°

  6. 在△ABC中,∠A,∠B都是銳角,且 ,則此三角形形狀是( )

  A.銳角三角形 B.直角三角形 C.鈍角三角形 D.形狀不能確定

  7. 如圖, 內(nèi)接于 ,若∠OAB=30°, 則∠C的大小為 ( )

  A.30° B.45° C.60° D.90°

  8. 甲、乙、丙、丁四位選手各10次射擊成績的平均數(shù)和方差如下表:

  選 手 甲 乙 丙 丁

  平均數(shù) (環(huán)) 9.2 9.2 9.2 9.2

  方差(環(huán)2) 0.035 0.015 0.025 0.027

  則這四人中成績發(fā)揮最穩(wěn)定的是( )

  A.甲 B.乙 C.丙 D.丁

  9. 如圖,在△ABC中,DE∥BC,AD =2DB,△ABC的面積為36,則△ADE的面積為( )

  A.81 B.54 C.24 D.16

  10. 地鐵1號線是重慶軌道交通線網(wǎng)東西方向的主干線,也是貫穿渝中區(qū)和沙坪壩區(qū)的重要交通通道,它的開通極大地方便了市民的出行?,F(xiàn)某同學(xué)要從沙坪壩南開中學(xué)到兩路口,他先勻速步行至沙坪壩地鐵站,等了一會,然后搭乘一號線地鐵直達(dá)兩路口(忽略途中??空镜臅r間)。在此過程中,他離南開中學(xué)的距離y與時間x的函數(shù)關(guān)系的大致圖象是( )

  11.觀察下列一組圖形,其中圖1中共有6個小黑點(diǎn),圖2中共有16個小黑點(diǎn),圖3中共有31個小黑點(diǎn),…,按此規(guī)律,圖5中小黑點(diǎn)的個數(shù)是(   )

  A.76 B.61 C.51 D.46

  12. 如圖,在平面直角坐標(biāo)系內(nèi),二次函數(shù)y=ax2+bx+c

  (a≠0)的圖象的頂點(diǎn)D在第四象限內(nèi),且該圖象與x軸

  的兩個交點(diǎn)的橫坐標(biāo)分別為﹣1和3.若反比例函數(shù)y=

  (k≠0,x>0)的圖象經(jīng)過點(diǎn)D.則下列說法不正確的是(  )

  A.b=﹣2a B.a+b+c<0 C.c=a+k D.a+2b+4c<8k

  二、填空題(本大題共6小題,每小題4分,共24分)

  13. 實(shí)數(shù)﹣ 的相反數(shù)是 。

  14. 我國的北斗衛(wèi)星導(dǎo)航系統(tǒng)與美國的GPS和俄羅斯格洛納斯系統(tǒng)并稱世界三大衛(wèi)星導(dǎo)航系統(tǒng),北斗系統(tǒng)的衛(wèi)星軌道高達(dá)36000公里,將36000用科學(xué)記數(shù)法表示為 。

  15. 摩托車生產(chǎn)是我市的支柱產(chǎn)業(yè)之一,不少品牌的摩托車暢銷國內(nèi)外,下表是摩托車廠今年1至5月份摩托車銷售量的統(tǒng)計(jì)表:(單位:輛)

  月 份 1 2 3 4 5

  銷售量(輛) 1700 2100 1250 1400 1680

  則這5個月銷售量的中位數(shù)是 輛。

  16. 如圖,正方形ABCD邊長為4,以BC為直徑的半圓O交對角線BD于E.則陰影部分面積為 (結(jié)果保留π)

  17. 有正面分別標(biāo)有數(shù)字 、 、 、 、 的五張不透明卡片,它們除數(shù)字不同外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從中任取一張,將卡片上的數(shù)字記為 ,則使關(guān)于 的方程 +x-m=0有實(shí)數(shù)解且關(guān)于 的不等式組 有整數(shù)解的的概率為 。

  18. 如圖,A、B是雙曲線 上的點(diǎn),A、B兩點(diǎn)的橫坐標(biāo)分別是a、2a,線段AB的延長線交x軸于點(diǎn)C,若S△AOC=9.則k的值是 。

  三、解答題(本大題共2小題,每小題7分,共14分)解答時每小題必須寫出必要的演算過程或推理步驟,請將解答過程書寫在答題卷中對應(yīng)的位置上。

  19.解方程

  20.如圖,四邊形ABCD是平行四邊形,BE、DF分別是∠ABC、∠ADC的平分線,且與對角線AC分別相交于點(diǎn)E、F。

  求證:AE=CF

  四、解答題(本大題共4小題,每小題10分,共40分)

  21.先化簡,再求值: ,其中x是不等式組

  的整數(shù)解。

  22.我區(qū)實(shí)施新課程改革后,學(xué)生的自主學(xué)習(xí)、合作交流能力有很大提高,張老師為了了解所教班級學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對本班部分學(xué)生進(jìn)行了為期半個月的跟蹤調(diào)査,并將調(diào)査結(jié)果分成四類,A:特別好;B:好;C:一般;D:較差;并將調(diào)査結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)統(tǒng)計(jì)圖回答下列問題:

  (1)本次調(diào)查中,張老師一共調(diào)査了   名同學(xué),其中C類女生有  名, D類男生有  名;

  (2)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;

  (3)為了共同進(jìn)步,張老師想從被調(diào)査的A類和D類學(xué)生中分別選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請用列表法或畫樹形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.

  23. 隨著人民生活水平的不斷提高,家庭轎車的擁有量逐年增加.據(jù)統(tǒng)計(jì),某小區(qū)2010年底擁有家庭轎車256輛,2012年底家庭轎車的擁有量達(dá)到400輛.

  (1)若該小區(qū)2010年底到2012年底家庭轎車擁有量的年平均增長率都相同,求該小區(qū)到2013年底家庭轎車將達(dá)到多少輛?

  (2)為了緩解停車矛盾,該小區(qū)決定投資15萬元再建造若干個停車位.據(jù)測算,建造費(fèi)用分別為室內(nèi)車位5000元/個,露天車位1000元/個,考慮到實(shí)際因素,計(jì)劃露天車位的數(shù)量不少于室內(nèi)車位的2倍,但不超過室內(nèi)車位的2.5倍,求該小區(qū)最多可建兩種車位各多少個?試寫出所有可能的方案.

  24. 正方形ABCD中,E點(diǎn)為BC中點(diǎn),連接AE,

  過B點(diǎn)作BF⊥AE,交CD于F點(diǎn),交AE于G點(diǎn),

  連接GD,過A點(diǎn)作AH⊥GD交GD于H點(diǎn).

  (1)求證:△ABE≌△BCF;

  (2)若正方形邊長為4,AH= ,求△AGD的面積.

  五、解答題(本大題共2個小題,每小題12分,共24分)

  25. 對于平面直角坐標(biāo)系中的任意兩點(diǎn)P1(x1,y1),P2(x2,y2),我們把

  |x1﹣x2|+|y1﹣y2|叫做P1、P2兩點(diǎn)間的直角距離,記作d(P1,P2).

  (1)令P0(2,﹣3),O為坐標(biāo)原點(diǎn),則d(O,P0)=   ;

  (2)已知O為坐標(biāo)原點(diǎn),動點(diǎn)P(x,y)滿足d(O,P)=1,請寫出x與y之間滿足的關(guān)系式,并在所給的直角坐標(biāo)系中畫出所有符合條件的點(diǎn)P所組成的圖形;

  (3)設(shè)P0(x0,y0)是一定點(diǎn),Q(x,y)是直線y=ax+b上的動點(diǎn),我們把d(P0,Q)的最小值叫做P0到直線y=ax+b的直角距離. 若P(a,﹣3)到直線y=x+1的直角距離為6,求a的值.

  26. 如圖,已知直線y=﹣ x+2與拋物線y=a(x+2)2相交于A、B兩點(diǎn),點(diǎn)A在y軸上,M為拋物線的頂點(diǎn).

  (1)請直接寫出點(diǎn)A的坐標(biāo)及該拋物線的解析式;

  (2)若P為線段AB上一個動點(diǎn)(A、B兩端點(diǎn)除外),

  連接PM,設(shè)線段PM的長為 ,點(diǎn)P的橫坐標(biāo)為x,

  請求出 與x之間的函數(shù)關(guān)系,并直接寫出自變量x

  的取值范圍;

  (3)在(2)的條件下,線段AB上是否存在點(diǎn)P,使以A、M、P為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

  數(shù)學(xué)參考答案

  一、選擇題(本大題共12個小題,每小題4分,共48分)

  題號 1 2 3 4 5 6 7 8 9 10 11 12

  答案 B A C D B C C B D C A D

  二、填空題(本大題共6個小題,每小題4分,共24分)

  13. 14. 15. 1680

  16. 6—π 17. 18. 6

  三、解答題(本大題共2個小題,每小題7分,共14分)

  19. 解:去分母,得: •••••••••2分

  去括號,得: ••••••••••••4分

  移項(xiàng),合并,得: ••••••••••••7分

  20. 證明:∵四邊形ABCD是平行四邊形,

  ∴AB=CD,∠ABC=∠CDA ,AB∥CD

  ∴∠BAC=∠DCA •••••••••3分

  ∵BE、DF分別是∠ABC、∠ADC的平分線,

  ∴∠ABE= ∠ABC,∠CDF= ∠ADC

  ∴∠ABE=∠CDF ••••••••5分

  ∴△ABE≌△CDF (ASA) ••••••••6分

  ∴AE=CF ••••••••7分

  四、解答題

  21解:

  •••••••••••••••3分

  ••••••••••••••••6分

  又解 ,得:—4

  ∴其整數(shù)解為—3•••••••••••••••••••9分

  當(dāng)x=—3時,原式= •••••••••••••••••10分

  22. 解:(1)根據(jù)題意得:張老師一共調(diào)查的學(xué)生數(shù)為:(1+2)÷15%=20(名);

  C類女生有:20×25%﹣3=2(名),

  D類男生有:20×(1﹣15%﹣25%﹣50%)﹣1=1(名);

  故答案為:20;2;1;••••3分

  (2)補(bǔ)全統(tǒng)計(jì)圖得:••••5分

  (3)畫樹狀圖得:

  ∵共有6種等可能的結(jié)果,所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的有3種情況,

  ∴所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率是: .•••••••10分

  23.解:(1)設(shè)年平均增長率為x,根據(jù)題意,得

  256(1+x)2=400,••••••2分

  解得:x1=0.25,x2=﹣2.25(舍去),

  ∴該小區(qū)到2013年底家庭轎車數(shù)為:400(1+0.25)=500輛.

  答:該小區(qū)到2013年底家庭轎車將達(dá)到500輛.•••••••••••4分

  (2)設(shè)建室內(nèi)車位y個,根據(jù)題意,得

  2y≤ ≤2.5y,••••••••••••••6分

  解得:20≤y≤21 ,

  ∵y為整數(shù),∴y=20,21:

  當(dāng)y=20時,室外車位為: =50個,••••••8分

  當(dāng)y=21時,室外車位為: =45個.••••••9分

  ∴室內(nèi)車位20個,室外車位50個或室內(nèi)車位21個,室外車位45個•••10分

  24.證明:(1)正方形ABCD中,∠ABE=90°,

  ∴∠1+∠2=90°,

  又AE⊥BF,

  ∴∠3+∠2=90°,

  則∠1=∠3

  又∵四邊形ABCD為正方形,

  ∴∠ABE=∠BCF=90°,AB=BC

  在△ABE和△BCF中,

  ∴△ABE≌△BCF(ASA) ••••••••••••••••••5分

  (2)延長BF交AD延長線于M點(diǎn),

  ∴∠MDF=90°

  由(1)知△ABE≌△BCF,

  ∴CF=BE

  ∵E點(diǎn)是BC中點(diǎn),

  ∴BE= BC,即CF= CD=FD,

  在△BCF和△MDF中,

  ∴△BCF≌△MDF(ASA)

  ∴BC=DM,即DM=AD,D是AM中點(diǎn)

  又AG⊥GM,即△AGM為直角三角形,

  ∴GD= AM=AD

  又∵正方形邊長為4,

  ∴GD=4

  S△AGD= GD•AH= ×4× = .•••••••••••••••••••10分

  25. 解:(1)根據(jù)題意得:d(O,P0)=|2﹣0|+|﹣3﹣0|=2+3=5;

  故答案為:5;••••••••••2分

  (2)由題意,得|x|+|y|=1,•••••••4分

  所有符合條件的點(diǎn)P組成的圖形如圖所示;•••••6分

  (3)∵P(a,﹣3)到直線y=x+1的直角距離為6,

  ∴設(shè)直線y=x+1上一點(diǎn)Q(x,x+1),則d(P,Q)=6,

  ∴|a﹣x|+|﹣3﹣x﹣1|=6,即|a﹣x|+|x+4|=6,

  當(dāng)a﹣x≥0,x≥﹣4時,原式=a﹣x+x+4=6,解得a=2;

  當(dāng)a﹣x<0,x<﹣4時,原式=x﹣a﹣x﹣4=6,解得a=﹣10,

  綜上,a的值為2或﹣10.••••••••••12分

  26. 解:( 1)A的坐標(biāo)是(0,2) ••••••••••••••••1分

  拋物線的解析式是y= (x+2)2 ••••••••••••••••3分

  (2)如圖,P為線段AB上任意一點(diǎn),連接PM

  過點(diǎn)P作PD⊥x軸于點(diǎn)D •••••••••••••••4分

  設(shè)P的坐標(biāo)是(x,﹣ x+2),則在Rt△PDM中

  PM2=DM2+PD2

  即l2=(﹣2﹣x)2+(﹣ x+2)2= x2+2x+8••••••••••••••6分

  P為線段AB上一個動點(diǎn),故自變量x的取值范圍為:﹣5

  答:l2與x之間的函數(shù)關(guān)系是l2= x2+2x+8,自變量x的取值范圍是﹣5

  (3)存在滿足條件的點(diǎn)P••••••••••••••••••••••••••8分

  連接AM,由題意得:AM= =2 ••••••••••••9分

 ?、佼?dāng)PM=PA時, x2+2x+8=x2+(﹣ x+2﹣2)2

  解得:x=﹣4

  此時y=﹣ ×(﹣4)+2=4

  ∴點(diǎn)P1(﹣4,4)•••••••••••••••••••••••••10分

 ?、诋?dāng)PM=AM時, x2+2x+8=(2 )2

  解得:x1=﹣ x2=0(舍去)

  此時y=﹣ ×(﹣ )+2=

  ∴點(diǎn)P2(﹣ , )•••••••••••••••••••••11分

 ?、郛?dāng)PA=AM時,x2+(﹣ x+2﹣2)2=(2 )2

  解得:x1=﹣ x2= (舍去)

  此時y=﹣ ×(﹣ )+2=

  ∴點(diǎn)P3(﹣ , )•••••••••••••••••••••12分

  綜上所述,滿足條件的點(diǎn)為:

  P1(﹣4,4)、P2(﹣ , )、P3(﹣ , )

  答:存在點(diǎn)P,使以A、M、P為頂點(diǎn)的三角形是等腰三角形,點(diǎn)P的坐標(biāo)是(﹣4,4)或(﹣ , )或(﹣ , ).


九年級第二學(xué)期數(shù)學(xué)期中試題相關(guān)文章:

1.九年級上數(shù)學(xué)期末試題及答案

2.九年級數(shù)學(xué)上期末考試試卷

3.九年級數(shù)學(xué)上期末試卷

4.九年級第一學(xué)期數(shù)學(xué)期末考試試卷分析

5.初三數(shù)學(xué)上期末考試卷及答案

4163595