2016海淀初三一模數(shù)學知識點
在數(shù)學緊張的考試階段,你做好知識點的復習了嗎?下面是學習啦小編收集整理的2016海淀初三一模數(shù)學知識點以供大家學習。
2016海淀初三一模數(shù)學知識點(一)
一、基本概念
1、有序數(shù)對:我們把這種有順序的兩個數(shù)a與b組成的數(shù)隊,叫做有序數(shù)對。
2、平面直角坐標系:我們可以在平面內畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。
水平的數(shù)軸稱為x軸或橫軸,習慣上取向右為正方向
豎直的數(shù)軸稱為y軸或縱軸,取向上方向為正方向
兩坐標軸的交戰(zhàn)為平面直角坐標系的原點
3、象限:坐標軸上的點不屬于任何象限
第一象限:x>0,y>0
第二象限:x<0,y>0
第三象限:x<0,y<0
第四象限:x>0,y<0
橫坐標軸上的點:(x,0)
縱坐標軸上的點:(0,y)
4、距離問題:點(x,y)距x軸的距離為y的絕對值
距y軸的距離為x的絕對值
坐標軸上兩點間距離:點A(x1,0)點B(x2,0),則AB距離為 x1-x2的絕對值
點A(0,y1)點B(0,y2),則AB距離為 y1-y2的絕對值
5、絕對值相等的代數(shù)問題:a與b的絕對值相等,可推出
1)a=b或者
2)a=-b
6、角平分線問題
若點(x,y)在一、三象限角平分線上,則x=y
若點(x,y)在二、四象限角平分線上,則x=-y
7、平移:
在平面直角坐標系中,將點(x,y)向右平移a個單位長度,可以得到對應點(x+a,y)
向左平移a個單位長度,可以得到對應點(x-a,y)
向上平移b個單位長度,可以得到對應點(x,y+b)
向下平移b個單位長度,可以得到對應點(x,y-b)
2016海淀初三一模數(shù)學知識點(二)
平面直角坐標特點
1、平行于坐標軸的直線的點的坐標特點:
平行于x軸(或橫軸)的直線上的點的縱坐標相同;
平行于y軸(或縱軸)的直線上的點的橫坐標相同。
2、各象限的角平分線上的點的坐標特點:
第一、三象限角平分線上的點的橫縱坐標相同;
第二、四象限角平分線上的點的橫縱坐標相反。
3、與坐標軸、原點對稱的點的坐標特點:
關于x軸對稱的點的橫坐標相同,縱坐標互為相反數(shù)
關于y軸對稱的點的縱坐標相同,橫坐標互為相反數(shù)
關于原點對稱的點的橫坐標、縱坐標都互為相反數(shù)
2016海淀初三一模數(shù)學知識點(三)
一 、 線
1、直線 2、射線 3、線段
二、角
1、角的兩種定義:一種是有公共端點的兩條射線所組成的圖形叫做角。
另一種是一條射線繞著端點從一個位置旋轉到另一個位置所形成的圖形。
2.角的平分線
3、角的度量:度量角的大小,可用“度”作為度量單位。把一個圓周分成360等份,每一份叫做一度的角。1度=60分;1分=60秒。
4. 角的分類:(1)銳角 (2)直角 (3)鈍角 (4)平角 (5)周角
5. 相關的角:
(1)對頂角 (2)互為補角 (3)互為余角
6、鄰補角:有公共頂點,一條公共邊,另兩條邊互為反向延長線的兩個角做互為鄰補角。
注意:互余、互補是指兩個角的數(shù)量關系,與兩個角的位置無關,而互為鄰補角則要求兩個角有特殊的位置關系。
7、角的性質
(1)對頂角相等 (2)同角或等角的余角相等 (3)同角或等角的補角相等。
三、相交線
1、斜線 2、兩條直線互相垂直 3、垂線,垂足
4、垂線的性質
(l)過一點有且只有一條直線與己知直線垂直。
(2)垂線段最短。
四、距離
1、兩點的距
2、從直線外一點到這條直線的垂線段的長度叫做點到直線的距離。
3、兩條平行線的距離:兩條直線平行,從一條直線上的任意一點向另一條直線引垂線,垂線段的長度,叫做兩條平行線的距離。
五、平行線
1、定義:在同一平面內,不相交的兩條直線叫做平行線。
說明:也可以說兩條射線或兩條線段平行,這實際上是指它們所在的直線平行。
2、平行線的判定:
(1)同位角相等,兩直線平行。
(2)內錯角相等,兩直線平行。
(3)同旁內角互補兩直線平行。
3、平行線的性質
(1)兩直線平行,同位角相等。
(2)兩直線平行,內錯角相等。
(3)兩直線平行,同旁內角互補。
說明:要證明兩條直線平行,用判定公理(或定理)在已知條件中有兩條直線平行時,則應用性質定理。
2016海淀初三一模數(shù)學知識點(四)
1.不在同一直線上的三點確定一個圓。
2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條?、谙业拇怪逼椒志€經(jīng)過圓心,并且平分弦所對的兩條?、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2 圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對稱中心的中心對稱圖形
4.圓是定點的距離等于定長的點的集合
5.圓的內部可以看作是圓心的距離小于半徑的點的集合
6.圓的外部可以看作是圓心的距離大于半徑的點的集合
7.同圓或等圓的半徑相等
8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等
10.推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
11定理 圓的內接四邊形的對角互補,并且任何一個外角都等于它 的內對角
12.①直線L和⊙O相交 d②直線L和⊙O相切 d=r③直線L和⊙O相離 d>r
13.切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
14.切線的性質定理 圓的切線垂直于經(jīng)過切點的半徑
15.推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點
16.推論2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
17.切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角
18.圓的外切四邊形的兩組對邊的和相等 外角等于內對角