數(shù)學(xué)數(shù)學(xué)歸納法
數(shù)學(xué)歸納是一種有特殊事例導(dǎo)出一般原理的思維方法。下面是學(xué)習(xí)啦小編為你整理的高中數(shù)學(xué)數(shù)學(xué)歸納法,一起來(lái)看看吧。
高中數(shù)學(xué)數(shù)學(xué)歸納法定義
最簡(jiǎn)單和常見的數(shù)學(xué)歸納法是證明當(dāng)n等于任意一個(gè)自然數(shù)時(shí)某命題成立。證明分下面兩步:
1.證明當(dāng)n= 1時(shí)命題成立。
2.假設(shè)n=m時(shí)命題成立,那么可以推導(dǎo)出在n=m+1時(shí)命題也成立。(m代表任意自然數(shù))
這種方法的原理在于:首先證明在某個(gè)起點(diǎn)值時(shí)命題成立,然后證明從一個(gè)值到下一個(gè)值的過(guò)程有效。當(dāng)這兩點(diǎn)都已經(jīng)證明,那么任意值都可以通過(guò)反復(fù)使用這個(gè)方法推導(dǎo)出來(lái)。把這個(gè)方法想成多米諾效應(yīng)也許更容易理解一些。例如:你有一列很長(zhǎng)的直立著的多米諾骨牌,如果你可以:
1)證明第一張骨牌會(huì)倒。
2)證明只要任意一張骨牌倒了,那么與其相鄰的下一張骨牌也會(huì)倒。
那么便可以下結(jié)論:所有的骨牌都會(huì)倒下。
高中數(shù)學(xué)數(shù)學(xué)歸納法及其證明方法
(一)第一數(shù)學(xué)歸納法
一般地,證明一個(gè)與正整數(shù)n有關(guān)的命題,有如下步驟
(1)證明當(dāng)n取第一個(gè)值時(shí)命題成立,對(duì)于一般數(shù)列取值為1,但也有特殊情況,
(2)假設(shè)當(dāng)n=k(k≥[n的第一個(gè)值],k為自然數(shù))時(shí)命題成立,證明當(dāng)n=k+1時(shí)命題也成立。
(二)第二數(shù)學(xué)歸納法
對(duì)于某個(gè)與自然數(shù)有關(guān)的命題,
(1)驗(yàn)證n=n0時(shí)P(n)成立,
(2)假設(shè)no<n<k時(shí)P(n)成立,并在此基礎(chǔ)上,推出P(k+1)成立。
綜合(1)(2)對(duì)一切自然數(shù)n(>n0),命題P(n)都成立,
(三)螺旋式數(shù)學(xué)歸納法
P(n),Q(n)為兩個(gè)與自然數(shù)有關(guān)的命題,
假如(1)P(n0)成立,
(2)假設(shè)P(k)(k>n0)成立,能推出Q(k)成立,假設(shè)Q(k)成立,能推出P(k+1)成立,綜合(1)(2),對(duì)于一切自然數(shù)n(>n0),P(n),Q(n)都成立,
(四)倒推數(shù)學(xué)歸納法(又名反向數(shù)學(xué)歸納法)
(1)對(duì)于無(wú)窮多個(gè)自然數(shù)命題P(n)成立,
(2)假設(shè)P(k+1)成立,并在此基礎(chǔ)上推出P(k)成立,
綜合(1)(2),對(duì)一切自然數(shù)n(>n0),命題P(n)都成立,
總而言之:歸納法是由一系列有限的特殊事例得出一般結(jié)論的推理方法。歸納法分為完全歸納法和不完全歸納法完全歸納法:數(shù)學(xué)歸納法就是一種不完全歸納法,在數(shù)學(xué)中有著重要的地位!
猜你感興趣的: