小學數(shù)學解題思路和方法
數(shù)學難嗎?數(shù)學是大多數(shù)學生都重視的一門課,它讓人又愛又恨。因此,提升數(shù)學分數(shù)是很多家長和孩子茫然無措的難題。而解決這種情況的最有效辦法就是,學習完知識后,把所有知識全部過濾一遍,查漏補缺,把不熟練的熟練起來,不會的地方一定搞清楚,你會發(fā)現(xiàn)數(shù)學的高分就是這么簡單。
解題思路:
由已知條件可知,一張桌子比一把椅子多的288元,正好是一把椅子價錢的(10-1)倍,由此可求得一把椅子的價錢。再根據(jù)椅子的價錢,就可求得一張桌子的價錢。
解:一把椅子的價錢:288÷(10-1)=32(元)
一張桌子的價錢:32×10=320(元)
答:一張桌子320元,一把椅子32元。
解題思路:
根據(jù)在距離中點4千米處相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知經(jīng)過4小時相遇。即可求甲比乙每小時快多少千米。
解:4×2÷4=8÷4=2(千米)
答:甲每小時比乙快2千米。
解題思路:
根據(jù)兩人付同樣多的錢買同一種鉛筆和李軍要了13支,張強要了7支,可知每人應該得(13+7)÷2支,而李軍要了13支比應得的多了3支,因此又給張強0.6元錢,即可求每支鉛筆的價錢。
解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)
答:每支鉛筆0.2元。
解題思路:
根據(jù)已知兩車上午8時從兩站出發(fā),下午2點返回原車站,可求出兩車所行駛的時間。根據(jù)兩車的速度和行駛的時間可求兩車行駛的總路程。
解:下午2點是14時。
往返用的時間:14-8=6(時)
兩地間路程:(40+45)×6÷2=85×6÷2=255(千米)
答:兩地相距255千米。
解題思路:
第一小組停下來參觀果園時間,第二小組多行了[3.5-(4.5-3.5)]?千米,也就是第一組要追趕的路程。又知第一組每小時比第二組快(?4.5-3.5)千米,由此便可求出追趕的時間。
解:第一組追趕第二組的路程:3.5-(4.5-?3.5)=3.5-1=2.5(千米)
第一組追趕第二組所用時間:2.5÷(4.5-3.5)=2.5÷1=2.5(小時)
答:第一組2.5小時能追上第二小組。
解題思路:
根據(jù)甲倉的存糧噸數(shù)比乙倉的4倍少5噸,可知甲倉的存糧如果增加5噸,它的存糧噸數(shù)就是乙倉的4倍,那樣總存糧數(shù)也要增加5噸。若把乙倉存糧噸數(shù)看作1倍,總存糧噸數(shù)就是(4+1)倍,由此便可求出甲、乙兩倉存糧噸數(shù)。
解:乙倉存糧:(32.5×2+5)÷(4+1)=(65+5)÷5=70÷5=14(噸)
甲倉存糧:14×4-5=56-5=51(噸)
答:甲倉存糧51噸,乙倉存糧14噸。
解題思路:
根據(jù)甲隊每天比乙隊多修10米,可以這樣考慮:如果把甲隊修的4天看作和乙隊4天修的同樣多,那么總長度就減少4個10米,這時的長度相當于乙(4+5)天修的。由此可求出乙隊每天修的米數(shù),進而再求兩隊每天共修的米數(shù)。
解:乙每天修的米數(shù):
(400-10×4)÷(4+5)=(400-40)÷9=360÷9=40(米)
甲乙兩隊每天共修的米數(shù):40×2+10=80+10=90(米)
答:兩隊每天修90米。
解題思路:
已知每張桌子比每把椅子貴30元,如果桌子的單價與椅子同樣多,那么總價就應減少30×6元,這時的總價相當于(6+5)把椅子的價錢,由此可求每把椅子的單價,再求每張桌子的單價。
解:每把椅子的價錢:
(455-30×6)÷(6+5)=(455-180)÷11=275÷11=25(元)
每張桌子的價錢:25+30=55(元)
答:每張桌子55元,每把椅子25元。
解題思路:
根據(jù)已知的兩車的速度可求速度差,根據(jù)兩車的速度差及快車比慢車多行的路程,可求出兩車行駛的時間,進而求出甲乙兩地的路程。
解:(7+65)×[40÷(75- 65)]=140×[40÷10]=140×4=560(千米)
答:甲乙兩地相距560千米。
解題思路:
根據(jù)已知托運玻璃250箱,每箱運費20元,可求出應付運費總錢數(shù)。根據(jù)每損壞一箱,不但不付運費還要賠償100元的條件可知,應付的錢數(shù)和實際付的錢數(shù)的差里有幾個(100+20)元,就是損壞幾箱。
解:(20×250-4400)÷(10+20)=600÷120=5(箱)
答:損壞了5箱。
解題思路:
根據(jù)題意,可以將題中的條件轉(zhuǎn)化為:平均分給2名同學、3名同學、4名同學、5名同學都少一支,因此,求出2、3、4、5的最小公倍數(shù)再減去1就是要求的問題。
解:2、3、4、5的最小公倍數(shù)是60
60-1=59(支)
答:這盒鉛筆最少有59支。
解題思路:
因第一中隊早出發(fā)2小時比第二中隊先行4×2千米,而每小時第二中隊比第一中隊多行(12-4)千米,由此即可求第二中隊追上第一中隊的時間。
解:4×2÷(12-4)=4×2÷8 =1(時)
答:第二中隊1小時能追上第一中隊。
解題思路:
由已知條件可知道,前后燒煤總數(shù)量相差(1500+1000)千克,是由每天相差(1500-1000)千克造成的,由此可求出原計劃燒的天數(shù),進而再求出這堆煤的數(shù)量。
解:原計劃燒煤天數(shù): (1500+1000)÷(1500-1000)=2500÷500=5(天)
這堆煤的重量: 1500×(5-1)=1500×4=6000(千克)
答:這堆煤有6000千克。
解題思路:
小紅打算買的鉛筆和本子總數(shù)與實際買的鉛筆和本子總數(shù)量是相等的,找回0.45 元,說明(8-5)支鉛筆當作(8-5)本練習本計算,相差0.45元。由此可求練習本的單價比鉛筆貴的錢數(shù)。從總錢數(shù)里去掉8個練習本比8支鉛筆貴的錢 數(shù),剩余的則是(5+8)支鉛筆的錢數(shù)。進而可求出每支鉛筆的價錢。
解:每本練習本比每支鉛筆貴的錢數(shù): 0.45÷(8-5)=0.45÷3=0.15(元)
8個練習本比8支鉛筆貴的錢數(shù): 0.15×8=1.2(元)
每支鉛筆的價錢: (3.8-1.2)÷(5+8)=2.6÷13=0.2(元)
答:每支鉛筆0.2元。
解題思路:
父、子年齡的差是(45-15)歲,當父親的年齡是兒子年齡的11倍時,這個差正好是兒子年齡的(11-1)倍,由此可求出兒子多少歲時,父親是兒子年齡的11倍。又知今年兒子15歲,兩個歲數(shù)的差就是所求的問題。
解:(45-15)÷(11-1)=3(歲)
15-3=12(年)
答:12年前父親的年齡是兒子年齡的11倍。
解題思路:
根據(jù)計劃每天修720米,這樣實際提前的長度是(720×3-1200)米。根據(jù)每天多修80米可求已修的天數(shù),進而求公路的全長。
解:已修的天數(shù):(720×3-1200)÷80=960÷80=12(天)
公路全長: (720+80)×12+1200=800×12+1200=9600+1200=10800(米)
答:這條公路全長10800米。
解題思路:
根據(jù)已知條件,可求12個紙箱轉(zhuǎn)化成木箱的個數(shù),先求出每個木箱裝多少雙,再求每個紙箱裝多少雙。
解:12個紙箱相當木箱的個數(shù): 2×(12÷3)=2×4=8(個)
一個木箱裝鞋的雙數(shù): 1800÷(8+4)=18000÷12=150(雙)
一個紙箱裝鞋的雙數(shù): 150×2÷3=100(雙)
答:每個紙箱可裝鞋100雙,每個木箱可裝鞋150雙。
解題思路:
由已知條件可知道,每天用去30袋水泥,同時用去30×2袋沙子,才能同時用完。但現(xiàn)在每天只用去40袋沙子,少用(30×2-40)袋,這樣才累計出120袋沙子。因此看120袋里有多少個少用的沙子袋數(shù),便可求出用的天數(shù)。進而可求出沙子和水泥的總袋數(shù)。
解:水泥用完的天數(shù):120÷(30×2-40)=120÷20=6(天)
水泥的總袋數(shù):30×6=180(袋)
沙子的總袋數(shù):180×2=360(袋)
答:運進水泥180袋,沙子360袋。
解題思路:
根據(jù)每個保溫瓶的價錢是每個茶杯的4倍,可把5個保溫瓶的價錢轉(zhuǎn)化為20個茶杯的價錢。這樣就可把5個保溫瓶和10個茶杯共用的90元錢,看作30個茶杯共用的錢數(shù)。
解:每個茶杯的價錢:90÷(4×5+10)=3(元)
每個保溫瓶的價錢:3×4=12(元)
答:每個保溫瓶12元,每個茶杯3元。
解題思路:
已知一個加數(shù)個位上是0,去掉0,就與第二個加數(shù)相同,可知第一個加數(shù)是第二個加數(shù)的10倍,那么兩個加數(shù)的和572,就是第二個加數(shù)的(10+1)倍。
解:第一個加數(shù):572÷(10+1)=52
第二個加數(shù):52×10=520
答:這兩個加數(shù)分別是52和520。