數(shù)學(xué)學(xué)習(xí)法有哪些
數(shù)學(xué)學(xué)習(xí)法有哪些呢?讓我們來一起學(xué)習(xí)一下吧!下面是學(xué)習(xí)啦小編整理的數(shù)學(xué)學(xué)習(xí)法有以供大家閱讀。
數(shù)學(xué)學(xué)習(xí)法
一、理解基本概念
數(shù)學(xué)大廈是由一個個公理、定義、定理作基礎(chǔ)砌成的,加強(qiáng)對這些概念的理解,有助于我們解題。且不談對集合、極限、三垂線這些內(nèi)涵豐富的概念的理解,單是從“a大于b”的定義上就可挖掘出很多東西。書上如此定義:“如果a-b>0,則稱a>b”,從定義我們可以直接得到判定兩個數(shù)大小的一種方法------作差比較法,深入思考可得a=b+△x(△x>0)(增量代換法),a>a+b/2>b(放縮法)等。越是這樣深入想,就越覺得數(shù)學(xué)有無窮魅力。
高三時,題目得很多,這就得從題目中理出一個頭緒來,掌握通性法。例如,做了不少不等式的證明題后,可總結(jié)也證不等式的基本方法為:比較法(作差、作商)、公式法、判別式法、數(shù)學(xué)歸納法等,特殊方法有放縮法,常用技巧有“圖像法”、“換元法”、
“裂項法”等。總結(jié)之后,對運(yùn)用這些方法解出的典型題目做一個回憶,加深印象,達(dá)到“見過的題目類型會做,棘手的題目可用這些方法分別去做”的境界,解題能力大為提高。
做題目難免出錯,要對常出錯的地方進(jìn)行總結(jié),寫出錯因,并用一個本子記下來(不必記題目)。例如:等比數(shù)列求和要考慮公比是否為1,偶次根號下的數(shù)要大于0(實(shí)數(shù)),除數(shù)不能為0等等。
應(yīng)該說,每次考試后,總有自己的一些對解題的體會,不妨定在一個本子上。如:考試時應(yīng)注重時間的分配,解題速度如何,是計算出錯還是方法不對,書寫要整潔有條理等。
通過這些總結(jié),對自己有了更深地了解,哪些地方嫻熟,哪些地方薄弱,然后對癥下藥,使自己的知識完善,技能得到提高。
三、形成知識網(wǎng)絡(luò)
在做好一、二點(diǎn)的基礎(chǔ)上,要形成自己的知識網(wǎng)絡(luò),“由厚變薄”。高中數(shù)學(xué)知識包括代數(shù)、立體幾何、解析幾何,其中代數(shù)分支較多,包括集合、函數(shù)、不等式、數(shù)列與極限、復(fù)數(shù)、排列組合、二項式定理。各章又可細(xì)分,于是形成了一個大的網(wǎng)絡(luò)。不過,要構(gòu)建這個大網(wǎng)絡(luò),首先得構(gòu)建好一個個小網(wǎng)絡(luò),即對每一個章節(jié)進(jìn)行構(gòu)建,內(nèi)容包括概念、重點(diǎn)、基本解法與數(shù)學(xué)思想、易出錯點(diǎn)與其他知識聯(lián)接點(diǎn)等,待第一輪復(fù)習(xí)后,花大概兩天的功夫?qū)⑦@些小網(wǎng)絡(luò)并成大網(wǎng)絡(luò),在以后的復(fù)習(xí)中不斷對這個網(wǎng)絡(luò)補(bǔ)充,加深印象。
有關(guān) 數(shù)學(xué)學(xué)習(xí)的障礙的推薦
1.依賴心理
數(shù)學(xué)教學(xué)中,學(xué)生普遍對教師存有依賴心理,缺乏學(xué)習(xí)的主動鉆研和創(chuàng)造精神。一是期望教師對數(shù)學(xué)問題進(jìn)行歸納概括并分門別類地一一講述,突出重點(diǎn)難點(diǎn)和關(guān)鍵;二是期望教師提供詳盡的解題示范,習(xí)慣于一步一步地模仿硬套。事實(shí)上,我們大多數(shù)數(shù)學(xué)教師也樂于此道,課前不布置學(xué)生預(yù)習(xí)教材,上課不要求學(xué)生閱讀教材,課后也不布置學(xué)生復(fù)習(xí)教材;習(xí)慣于一塊黑板、一道例題和演算幾道練習(xí)題。長此以往,學(xué)生的鉆研精神被壓抑,創(chuàng)造潛能遭扼殺,學(xué)習(xí)的積極性和主動性逐漸喪失。在這種情況下,學(xué)生就不可能產(chǎn)生"學(xué)習(xí)的高峰體驗"--高漲的激勵情緒,也不可能在"學(xué)習(xí)中意識和感覺到自己的智慧力量,體驗到創(chuàng)造的樂趣 "。
2.急躁心理
急功近利,急于求成,盲目下筆,導(dǎo)致解題出錯。
一是未弄清題意,未認(rèn)真讀題、審題,沒弄清哪些是已知條件,哪些是未知條件,哪些是直接條件,哪些是間接條件,需要回答什么問題等;
二是未進(jìn)行條件選擇,沒有"從貯存的記憶材料中去提缺題設(shè)問題所需要的材料進(jìn)行對比、篩選,就"急于猜解題方案和盲目嘗試解題";
三是被題設(shè)假象蒙蔽,未能采用多層次的抽象、概括、判斷和準(zhǔn)確的邏輯推理;
四是忽視對數(shù)學(xué)問題解題后的整體思考、回顧和反思,包括"該數(shù)學(xué)問題解題方案是否正確?是否最佳?是否可找出另外的方案?該方案有什么獨(dú)到之處?能否推廣和做到智能遷移等等"。
3.定勢心理
定勢心理即人們分析問題、思考問題的思維定勢。在較長時期的數(shù)學(xué)教學(xué)過程中,在教師習(xí)慣性教學(xué)程序影響下,學(xué)生形成一個比較穩(wěn)固的習(xí)慣性思考和解答數(shù)學(xué)問題程序化、意向化、規(guī)律化的個性思維策略的連續(xù)系統(tǒng)--解決數(shù)學(xué)問題所遵循的某種思維格式和慣性。不可否認(rèn),這種解決數(shù)學(xué)問題的思維格式和思維慣性是數(shù)學(xué)知識的積累和解題經(jīng)驗、技能的匯聚,它一方面有利于學(xué)生按照一定的程序思考數(shù)學(xué)問題,比較順利地求得一般同類數(shù)學(xué)問題的最終答案;另一方面這種定勢思維的單一深化和習(xí)慣性增長又帶來許多負(fù)面影響,如使學(xué)生的思維向固定模式方面發(fā)展,解題適應(yīng)能力提高緩慢,分析問題和解決問題的能力得不到應(yīng)有的提高等。
4.偏重結(jié)論
偏重數(shù)學(xué)結(jié)論而忽視數(shù)學(xué)過程,這是數(shù)學(xué)教學(xué)過程中長期存在的問題。從學(xué)生方面來講,同學(xué)間的相互交流也僅是對答案,比分?jǐn)?shù),很少見同學(xué)間有對數(shù)學(xué)問題過程的深層次討論和對解題方法的創(chuàng)造性研究,至于思維變式、問題變式更難見有涉及。從教師方面來講,也存在自覺不自覺地忽視數(shù)學(xué)問題的解決過程,忽視結(jié)論的形成過程,忽視解題方法的探索,對學(xué)生的評價也一般只看"結(jié)論"評分,很少顧及"數(shù)學(xué)過程"。從家長方面來講,更是注重結(jié)論和分?jǐn)?shù),從不過問"過程"。教師、家長的這些做法無疑助長了中學(xué)生數(shù)學(xué)學(xué)習(xí)的偏重結(jié)論心理。發(fā)展下去的結(jié)果是,學(xué)生對定義、公式、定理、法則的來龍去脈不清楚,知識理解不透徹,不能從本質(zhì)上認(rèn)識數(shù)學(xué)問題,無法形成正確的概念,難以深刻領(lǐng)會結(jié)論,致使其智慧得不到啟迪,思維的方法和習(xí)慣得不到訓(xùn)練和養(yǎng)成,觀察、分析、綜合等能力得不到提高。