小升初奧數(shù)知識點:平均數(shù)
小升初奧數(shù)知識點:平均數(shù)
在生活中會遇見和數(shù)學(xué)有關(guān)的問題。下面是學(xué)習(xí)啦小編收集整理的小升初奧數(shù)《平均數(shù)》知識點以供大家學(xué)習(xí)。
小升初奧數(shù)知識點:平均數(shù)
基本公式:①平均數(shù)=總數(shù)量÷總份數(shù)
總數(shù)量=平均數(shù)×總份數(shù)
總份數(shù)=總數(shù)量÷平均數(shù)
?、谄骄鶖?shù)=基準(zhǔn)數(shù)+每一個數(shù)與基準(zhǔn)數(shù)差的和÷總份數(shù)
基本算法:
?、偾蟪隹倲?shù)量以及總份數(shù),利用基本公式①進(jìn)行計算。
?、诨鶞?zhǔn)數(shù)法:根據(jù)給出的數(shù)之間的關(guān)系,確定一個基準(zhǔn)數(shù);一般選與所有數(shù)比較接近的數(shù)或者中間數(shù)為基準(zhǔn)數(shù);以基準(zhǔn)數(shù)為標(biāo)準(zhǔn),求所有給出數(shù)與基準(zhǔn)數(shù)的差;再求出所有差的和;再求出這些差的平均數(shù);最后求這個差的平均數(shù)和基準(zhǔn)數(shù)的和,就是所求的平均數(shù),具體關(guān)系見基本公式②
小升初奧數(shù)知識點:抽屜原理
抽屜原則一:如果把(n+1)個物體放在n個抽屜里,那么必有一個抽屜中至少放有2個物體。
例:把4個物體放在3個抽屜里,也就是把4分解成三個整數(shù)的和,那么就有以下四種情況:
?、?=4+0+0②4=3+1+0③4=2+2+0④4=2+1+1
觀察上面四種放物體的方式,我們會發(fā)現(xiàn)一個共同特點:總有那么一個抽屜里有2個或多于2個物體,也就是說必有一個抽屜中至少放有2個物體。
抽屜原則二:如果把n個物體放在m個抽屜里,其中n>m,那么必有一個抽屜至少有:
?、賙=[n/m]+1個物體:當(dāng)n不能被m整除時。
?、趉=n/m個物體:當(dāng)n能被m整除時。
理解知識點:[X]表示不超過X的最大整數(shù)。
例[4.351]=4;[0.321]=0;[2.9999]=2;
關(guān)鍵問題:構(gòu)造物體和抽屜。也就是找到代表物體和抽屜的量,而后依據(jù)抽屜原則進(jìn)行運(yùn)算。
小升初奧數(shù)知識點:定義新運(yùn)算
基本概念:定義一種新的運(yùn)算符號,這個新的運(yùn)算符號包含有多種基本(混合)運(yùn)算。
基本思路:嚴(yán)格按照新定義的運(yùn)算規(guī)則,把已知的數(shù)代入,轉(zhuǎn)化為加減乘除的運(yùn)算,然后按照基本運(yùn)算過程、規(guī)律進(jìn)行運(yùn)算。
關(guān)鍵問題:正確理解定義的運(yùn)算符號的意義。
注意事項:①新的運(yùn)算不一定符合運(yùn)算規(guī)律,特別注意運(yùn)算順序。
?、诿總€新定義的運(yùn)算符號只能在本題中使用。