初二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)
數(shù)學(xué)這個(gè)學(xué)科對(duì)于很多人來(lái)說(shuō)比較難,那么,初二數(shù)學(xué)都有哪些知識(shí)點(diǎn)?下面小編為大家?guī)?lái)初二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié),歡迎大家參考閱讀,希望大家喜歡!
初二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)
第十一章 全等三角形
一、知識(shí)框架
二、知識(shí)概念
1。全等三角形:兩個(gè)三角形的形狀、大小、都一樣時(shí),其中一個(gè)可以經(jīng)過(guò)平移、旋轉(zhuǎn)、對(duì)稱等運(yùn)動(dòng)(或稱變換)使之與另一個(gè)重合,這兩個(gè)三角形稱為全等三角形。
2。全等三角形的性質(zhì):全等三角形的對(duì)應(yīng)角相等、對(duì)應(yīng)邊相等。
3。三角形全等的判定公理及推論有:
(1)“邊角邊”簡(jiǎn)稱“SAS”
(2)“角邊角”簡(jiǎn)稱“ASA”
(3)“邊邊邊”簡(jiǎn)稱“SSS”
(4)“角角邊”簡(jiǎn)稱“AAS”
(5)斜邊和直角邊相等的兩直角三角形(HL)。
4。角平分線推論:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在叫的平分線上。
5。證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對(duì)頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關(guān)系)。②、回顧三角形判定,搞清我們還需要什么。③、正確地書(shū)寫(xiě)證明格式(順序和對(duì)應(yīng)關(guān)系從已知推導(dǎo)出要證明的問(wèn)題)。
在學(xué)習(xí)三角形的全等時(shí),教師應(yīng)該從實(shí)際生活中的圖形出發(fā),引出全等圖形進(jìn)而引出全等三角形。通過(guò)直觀的理解和比較發(fā)現(xiàn)全等三角形的奧妙之處。在經(jīng)歷三角形的角平分線、中線等探索中激發(fā)學(xué)生的集合思維,啟發(fā)他們的靈感,使學(xué)生體會(huì)到集合的真正魅力。
第十二章 軸對(duì)稱
一、知識(shí)框架
二、知識(shí)概念
1。對(duì)稱軸:如果一個(gè)圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形;這條直線叫做對(duì)稱軸。
2。性質(zhì):(1)軸對(duì)稱圖形的對(duì)稱軸,是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。
(2)角平分線上的點(diǎn)到角兩邊距離相等。
(3)線段垂直平分線上的任意一點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等。
(4)與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。
(5)軸對(duì)稱圖形上對(duì)應(yīng)線段相等、對(duì)應(yīng)角相等。
3。等腰三角形的性質(zhì):等腰三角形的兩個(gè)底角相等,(等邊對(duì)等角)
4。等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡(jiǎn)稱為“三線合一”。
5。等腰三角形的判定:等角對(duì)等邊。
6。等邊三角形角的特點(diǎn):三個(gè)內(nèi)角相等,等于60°,
7。等邊三角形的判定:三個(gè)角都相等的三角形是等腰三角形。
有一個(gè)角是60°的等腰三角形是等邊三角形。
有兩個(gè)角是60°的三角形是等邊三角形。
8。直角三角形中,30°角所對(duì)的直角邊等于斜邊的一半。
9。直角三角形斜邊上的中線等于斜邊的一半。
本章內(nèi)容要求學(xué)生在建立在軸對(duì)稱概念的基礎(chǔ)上,能夠?qū)ι钪械膱D形進(jìn)行分析鑒賞,親身經(jīng)歷數(shù)學(xué)美,正確理解等腰三角形、等邊三角形等的性質(zhì)和判定,并利用這些性質(zhì)來(lái)解決一些數(shù)學(xué)問(wèn)題。
第十三章 實(shí)數(shù)
一、知識(shí)框架
二、知識(shí)概念
1。算術(shù)平方根:一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么正數(shù)x叫做a的算術(shù)平方根,記作。0的算術(shù)平方根為0;從定義可知,只有當(dāng)a≥0時(shí),a才有算術(shù)平方根。
2。平方根:一般地,如果一個(gè)數(shù)x的平方根等于a,即x2=a,那么數(shù)x就叫做a的平方根。
3。正數(shù)有兩個(gè)平方根(一正一負(fù))它們互為相反數(shù);0只有一個(gè)平方根,就是它本身;負(fù)數(shù)沒(méi)有平方根。
4。正數(shù)的立方根是正數(shù);0的立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。
5。數(shù)a的相反數(shù)是-a,一個(gè)正實(shí)數(shù)的絕對(duì)值是它本身,一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù),0的絕對(duì)值是0
實(shí)數(shù)部分主要要求學(xué)生了解無(wú)理數(shù)和實(shí)數(shù)的概念,知道實(shí)數(shù)和數(shù)軸上的點(diǎn)一一對(duì)應(yīng),能估算無(wú)理數(shù)的大小;了解實(shí)數(shù)的運(yùn)算法則及運(yùn)算律,會(huì)進(jìn)行實(shí)數(shù)的運(yùn)算。重點(diǎn)是實(shí)數(shù)的意義和實(shí)數(shù)的分類;實(shí)數(shù)的運(yùn)算法則及運(yùn)算律。
第十四章 一次函數(shù)
一、知識(shí)框架
二、知識(shí)概念
1。一次函數(shù):若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱y是x的正比例函數(shù)。
2。正比例函數(shù)一般式:y=kx(k≠0),其圖象是經(jīng)過(guò)原點(diǎn)(0,0)的一條直線。
3。正比例函數(shù)y=kx(k≠0)的圖象是一條經(jīng)過(guò)原點(diǎn)的直線,當(dāng)k>0時(shí),直線y=kx經(jīng)過(guò)第一、三象限,y隨x的增大而增大,當(dāng)k<0時(shí),直線y=kx經(jīng)過(guò)第二、四象限,y隨x的增大而減小,在一次函數(shù)y=kx+b中:當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小。
4。已知兩點(diǎn)坐標(biāo)求函數(shù)解析式:待定系數(shù)法
一次函數(shù)是初中學(xué)生學(xué)習(xí)函數(shù)的開(kāi)始,也是今后學(xué)習(xí)其它函數(shù)知識(shí)的基石。在學(xué)習(xí)本章內(nèi)容時(shí),教師應(yīng)該多從實(shí)際問(wèn)題出發(fā),引出變量,從具體到抽象的認(rèn)識(shí)事物。培養(yǎng)學(xué)生良好的變化與對(duì)應(yīng)意識(shí),體會(huì)數(shù)形結(jié)合的思想。在教學(xué)過(guò)程中,應(yīng)更加側(cè)重于理解和運(yùn)用,在解決實(shí)際問(wèn)題的同時(shí),讓學(xué)習(xí)體會(huì)到數(shù)學(xué)的實(shí)用價(jià)值和樂(lè)趣。
第十五章整式的乘除與分解因式
一、知識(shí)概念
1。同底數(shù)冪的乘法法則:(m,n都是正數(shù))
2。。冪的乘方法則:(m,n都是正數(shù))
3。整式的乘法
(1)單項(xiàng)式乘法法則:單項(xiàng)式相乘,把它們的系數(shù)、相同字母分別相乘,對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,連同它的指數(shù)作為積的一個(gè)因式。
(2)單項(xiàng)式與多項(xiàng)式相乘:單項(xiàng)式乘以多項(xiàng)式,是通過(guò)乘法對(duì)加法的分配律,把它轉(zhuǎn)化為單項(xiàng)式乘以單項(xiàng)式,即單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。
(3)。多項(xiàng)式與多項(xiàng)式相乘
多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式中的每一項(xiàng)乘以另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。
4。平方差公式:
5。完全平方公式:
6。同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即(a≠0,m、n都是正數(shù),且m>n)。
在應(yīng)用時(shí)需要注意以下幾點(diǎn):
①法則使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a≠0。
②任何不等于0的數(shù)的0次冪等于1,即,如,(-2。50=1),則00無(wú)意義。
③任何不等于0的數(shù)的-p次冪(p是正整數(shù)),等于這個(gè)數(shù)的p的次冪的倒數(shù),即(a≠0,p是正整數(shù)),而0-1,0-3都是無(wú)意義的;當(dāng)a>0時(shí),a-p的值一定是正的;當(dāng)a<0時(shí),a-p的值可能是正也可能是負(fù)的,如,
④運(yùn)算要注意運(yùn)算順序。
7。整式的除法
單項(xiàng)式除法單項(xiàng)式:單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式;
多項(xiàng)式除以單項(xiàng)式:多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加。
8。分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式。
分解因式的一般方法:1。提公共因式法2。運(yùn)用公式法3。十字相乘法
分解因式的步驟:
(1)先看各項(xiàng)有沒(méi)有公因式,若有,則先提取公因式;
(2)再看能否使用公式法;
(3)用分組分解法,即通過(guò)分組后提取各組公因式或運(yùn)用公式法來(lái)達(dá)到分解的目的;
(4)因式分解的最后結(jié)果必須是幾個(gè)整式的乘積,否則不是因式分解;
(5)因式分解的結(jié)果必須進(jìn)行到每個(gè)因式在有理數(shù)范圍內(nèi)不能再分解為止。
整式的乘除與分解因式這章內(nèi)容知識(shí)點(diǎn)較多,表面看來(lái)零碎的概念和性質(zhì)也較多,但實(shí)際上是密不可分的整體。在學(xué)習(xí)本章內(nèi)容時(shí),應(yīng)多準(zhǔn)備些小組合作與交流活動(dòng),培養(yǎng)學(xué)生推理能力、計(jì)算能力。在做題中體驗(yàn)數(shù)學(xué)法則、公式的簡(jiǎn)潔美、和諧美,提高做題效率。
初二數(shù)學(xué)知識(shí)點(diǎn)整理
第十六章 二次根式
主要知識(shí)點(diǎn):
1、二次根式的概念
2、二次根式的性質(zhì)
3、簡(jiǎn)二次根式與同類二次根式
4、二次根式的運(yùn)算
中考分值:
填空一題、選擇一題共4~8分。
大題目中的計(jì)算基本都會(huì)運(yùn)用到二次根式的計(jì)算。
重難點(diǎn):
初中第一次將有理數(shù)的計(jì)算拓展到無(wú)理數(shù)的計(jì)算。
二次根式的運(yùn)算是基礎(chǔ)運(yùn)算,為后面各種方程的計(jì)算做基礎(chǔ)。
二次根式的計(jì)算比較容易出錯(cuò)。
第十七章一元二次方程
主要知識(shí)點(diǎn):
1、一元二次方程的概念
2、一元二次方程的解法
3、一元二次方程根的判別式
4、一元二次方程的應(yīng)用
中考分值:
所有需要運(yùn)算的題目基本都需要運(yùn)用到解一元二次方程,分值不低于30分。
重難點(diǎn):
一元二次方程解法多樣,需要注意方法的選擇。
鋪墊型知識(shí)點(diǎn),為后面學(xué)習(xí)分式方程、無(wú)理方程等做鋪墊。
如果不會(huì)解一元二次方程中考基本寸步難行。
第十八章正比例函數(shù)和反比例函數(shù)
主要知識(shí)點(diǎn):
1、函數(shù)的概念
2、正比例函數(shù)
3、反比例函數(shù)
4、函數(shù)表示法
中考分值:
填空選擇一題4分
重難點(diǎn):
初中第一次接觸函數(shù),概念和意義比較難理解。
這一章是所有函數(shù)的基礎(chǔ),為后面學(xué)習(xí)一次函數(shù)、二次函數(shù)做鋪墊。
第十九章幾何證明
主要知識(shí)點(diǎn):
1、公理、定理及命題,逆命題及逆定理
2、線段的垂直平分線
3、角平分線
4、直角三角形的性質(zhì)
5、勾股定理
中考分值:
21題幾何證明10分,填空選擇8~12分。
18、25題難題基本都會(huì)運(yùn)用到本章所學(xué)知識(shí)點(diǎn)。
重難點(diǎn):
相較于初一的幾何,這一章的難度大大增加,是本學(xué)期最重要的章節(jié)。
這一章所學(xué)的知識(shí)點(diǎn)都是幾何比較軸心的知識(shí)點(diǎn),以后學(xué)習(xí)幾何會(huì)經(jīng)常使用。
初二數(shù)學(xué)必備知識(shí)點(diǎn)
一、分式
1、兩個(gè)整數(shù)不能整除時(shí),出現(xiàn)了分?jǐn)?shù);類似地,當(dāng)兩個(gè)整式不能整除時(shí),就出現(xiàn)了分式。
整式A除以整式B,可以表示成的形式。如果除式B中含有字母,那么稱為分式,對(duì)于任意一個(gè)分式,分母都不能為零。
2、整式和分式統(tǒng)稱為有理式,即有:
3、進(jìn)行分?jǐn)?shù)的化簡(jiǎn)與運(yùn)算時(shí),常要進(jìn)行約分和通分,其主要依據(jù)是分?jǐn)?shù)的基本性質(zhì):
分式的分子與分母都乘以(或除以)同一個(gè)不等于零的整式,分式的值不變。
4、一個(gè)分式的分子、分母有公因式時(shí),可以運(yùn)用分式的基本性質(zhì),把這個(gè)分式的分子、分母同時(shí)除以它的們的公因式,也就是把分子、分母的公因式約去,這叫做約分。
二、分式的乘除法
1、分式乘以分式,用分子的積做積的分子,分母的積做積的分母;分式除以以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
2、分式乘方,把分子、分母分別乘方。
逆向運(yùn)用,當(dāng)n為整數(shù)時(shí),仍然有成立。
3、分子與分母沒(méi)有公因式的分式,叫做最簡(jiǎn)分式。
三、分式的加減法
1、分式與分?jǐn)?shù)類似,也可以通分。根據(jù)分式的基本性質(zhì),把幾個(gè)異分母的分式分別化成與原來(lái)的分式相等的同分母的分式,叫做分式的通分。
2、分式的加減法:
分式的加減法與分?jǐn)?shù)的加減法一樣,分為同分母的分式相加減與異分母的分式相加減。
(1)同分母的分式相加減,分母不變,把分子相加減;
上述法則用式子表示是:
(2)異號(hào)分母的分式相加減,先通分,變?yōu)橥帜傅姆质?,然后再加減;
上述法則用式子表示是:
3、概念內(nèi)涵:
通分的關(guān)鍵是確定最簡(jiǎn)分母,其方法如下:最簡(jiǎn)公分母的系數(shù),取各分母系數(shù)的最小公倍數(shù);最簡(jiǎn)公分母的字母,取各分母所有字母的最高次冪的積,如果分母是多項(xiàng)式,則首先對(duì)多項(xiàng)式進(jìn)行因式分解。
四、分式方程
1、解分式方程的一般步驟:
①在方程的兩邊都乘最簡(jiǎn)公分母,約去分母,化成整式方程;
②解這個(gè)整式方程;
③把整式方程的根代入最簡(jiǎn)公分母,看結(jié)果是不是零,使最簡(jiǎn)公母為零的根是原方程的增根,必須舍去。
2、列分式方程解應(yīng)用題的一般步驟:
①審清題意;
②設(shè)未知數(shù);
③根據(jù)題意找相等關(guān)系,列出(分式)方程;
④解方程,并驗(yàn)根;
⑤寫(xiě)出答案。
初二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)相關(guān)文章:
★ 初二數(shù)學(xué)知識(shí)點(diǎn)歸納整理2022
★ 八年級(jí)數(shù)學(xué)必備知識(shí)點(diǎn)總結(jié)梳理
★ 2022初二數(shù)學(xué)知識(shí)點(diǎn)歸納整理
★ 初二數(shù)學(xué)知識(shí)點(diǎn)歸納2021
★ 八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)梳理總結(jié)2022
★ 初二數(shù)學(xué)知識(shí)點(diǎn)歸納