北京版八年級下冊數(shù)學(xué)電子課本
數(shù)學(xué)是研究數(shù)量、結(jié)構(gòu)、變化、空間以及信息等概念的一門學(xué)科。那么關(guān)于八年級下冊數(shù)學(xué)電子課本怎么學(xué)習(xí)呢?以下是小編準備的一些北京版八年級下冊數(shù)學(xué)電子課本,僅供參考。
北京版八年級下冊數(shù)學(xué)電子課本
微信搜索關(guān)注公眾號:5068教學(xué)資料
查看完整版電子課本可微信搜索公眾號【5068教學(xué)資料】,關(guān)注后對話框回復(fù)【8】獲取八年級電子課本資源。
八年級數(shù)學(xué)下冊知識點
變量與函數(shù)
一、變量與常量
1、變量:在某一變化過程中,可以取不同的數(shù)值,級數(shù)值發(fā)生變化的量,叫做變量。
常量:在某一變化過程中,取值(數(shù)值)始終保持不變的量,叫做常量。
2、注意事項:
(1)常量和變量是相對的,在不同的研究過程中有些是可以相互轉(zhuǎn)化的;
(2)離開具體的過程抽象地說一個量是常量還是變量是不允許的;
(3)在各種關(guān)于變量、常量的例子中,變量之間有一定的依賴關(guān)系。如三角形的面積,當?shù)走呉欢〞r,高與面積之間是有關(guān)聯(lián)的,不是各自隨意變化。
二、函數(shù)概念
1、定義:在某個變化過程中,如果有兩個變量x和y,對于x的每一個確定的值,y都有的值與其對應(yīng),那么,我們就說y是x的函數(shù),其中x叫做自變量,y叫做因變量。
2、對函數(shù)概念的理解,主要抓住三點:
(1)有兩個變量;
(2)一個變量的數(shù)值隨另一個變量的數(shù)值的變化而變化;
(3)自變量每確定一個值,因變量就有一個并且只有一個值與其對應(yīng)。
三、函數(shù)的表示法:(1)列表法;(2)圖象法;(3)解析法。
四、求函數(shù)自變量的取值范圍
1.實際問題中的自變量取值范圍
按照實際問題是否有意義的要求來求。
2.用數(shù)學(xué)式子表示的函數(shù)的自變量取值范圍
例1.求下列函數(shù)中自變量x的取值范圍
(1)解析式為整式的,x取全體實數(shù);
(2)解析式為分式的,分母必須不等于0式子才有意義;
(3)解析式的是二次根式的被開方數(shù)必須是非負數(shù)式子才有意義;
(4)解析式是三次方根的,自變量的取值范圍是全體實數(shù)。
3.函數(shù)值:指自變量取一個數(shù)值代入解析式求出的數(shù)值,稱為函數(shù)值;實際上就是以前學(xué)的求代數(shù)式的值。
函數(shù)的圖象
一、平面直角坐標系
1、定義:平面內(nèi)畫兩條互相垂直且有公共原點的數(shù)軸,就組成了平面直角坐標系。其中水平的數(shù)軸叫做橫軸(或x軸),取向右為正方向;豎直的數(shù)軸叫做縱軸(y軸),取向上為正方向;兩軸的交點O叫做原點。在平面內(nèi),原點的右邊為正,左邊為負,原點的上邊為正,下邊為負。
2、坐標平面內(nèi)被x軸、y軸分割成四個部分,按照“逆時針方向”分別為第一象限、第二象限、第三象限、第四象限
注意:x軸、y軸原點不屬于任何象限。
3、平面直角坐標系中的點分別向x軸、y軸作垂線段,在x軸上垂足所顯示的數(shù)稱為該點的橫坐標,在y軸上垂足所顯示的數(shù)稱為該點的縱坐標。點的坐標反映的是一個點在平面內(nèi)的位置。
寫坐標的規(guī)則:橫坐標在前,縱坐標在后,中間用“,”隔開,全部用小括號括起來。
如P(3,2)橫坐標為3,縱坐標為2。
特別注意坐標的順序不同,表示的就是不同位置的點。
所以點的坐標是一對有順序的實數(shù),稱為有序?qū)崝?shù)對。
4、平面直角坐標系中的點與有序?qū)崝?shù)對一一對應(yīng)。
5、坐標的特征
(1)在第一象限內(nèi)的點,橫坐標是正數(shù),縱坐標是正數(shù);在第二象限內(nèi)的點,橫坐標是負數(shù),縱坐標是正數(shù);
在第三象限內(nèi)的點,橫坐標是負數(shù),縱坐標是負數(shù);在第四象限內(nèi)的點,橫坐標是正數(shù),縱坐標是負數(shù);
(2)x軸上點的縱坐標等于零;y軸上點的橫坐標等于零.
6、對稱點的坐標特征
(1)關(guān)于x軸對稱的兩點:橫坐標相同,縱坐標絕對值相等,符號相反;
(2)關(guān)于y軸對稱的兩點:橫坐標絕對值相等,符號相反,縱坐標相同;
(3)關(guān)于原點對稱的兩點:橫坐標絕對值相等,符號相反,縱坐標也絕對值相等,符號相反。
(4)第一、三象限角平分線上點:橫坐標與縱坐標相同;
(5)第二、四象限角平分線上點:橫坐標與縱坐標互為相反數(shù)。
7、點到兩坐標軸的距離
點A(a,b)到x軸的距離為|b|,點A(a,b)到y(tǒng)軸的距離為|a|。
二、函數(shù)的圖象
1、意義:對于一個函數(shù),如果把自變量x與函數(shù)值y的每對對應(yīng)值分別作為點的橫坐標與縱坐標,在坐標平面內(nèi)描出相應(yīng)的點,這些點所組成的圖形,就是這個函數(shù)的圖象。
2、作函數(shù)圖象的方法:描點法。步驟:(1)列表;(2)描點;(3)連線。
3、一般函數(shù)作圖象,要求橫軸和縱軸上的單位長度一定要一致,按照對應(yīng)的解析式先計算出一對對應(yīng)值,就是坐標,然后描點,再連線;畫實際問題的圖象時,必須先考慮函數(shù)自變量的取值范圍.有時為了表達的方便,建立直角坐標系時,橫軸和縱軸上的單位長度可以不一致。
一次函數(shù)
一、一次函數(shù)的概念
之所以稱為一次函數(shù),是因為它們的關(guān)系式是用一次整式表示的。學(xué)習(xí)此概念要從兩個方面來理解。
(1)從其表達式上:
一次函數(shù)通常是指形如:y=kx+b(k、b為常數(shù),k≠0)的函數(shù),凡是成這種形式的函數(shù)都是一次函數(shù)。而當b=0時,即y=kx(k≠0的常數(shù)),則稱為正比例函數(shù),其中k為比例系數(shù)。
(2)從其意義上:
它們表示的是兩個變量之間的關(guān)系,這種函數(shù)關(guān)系具有特定的意義,如,如果說兩各變量之間具有一次函數(shù)關(guān)系,我們就可按照概念設(shè)出函數(shù)關(guān)系式,成正比例關(guān)系的也同樣,如,若s與t成正比例關(guān)系,我們便可設(shè)s=kt(k≠0,t為自變量)
“正比例函數(shù)”與“成正比例”的區(qū)別:
正比例函數(shù)一定是y=kx這種形式,而成正比例則意義要廣泛得多,它反映了兩個量之間的固定正比例關(guān)系,如a+3與b-2成正比例,則可表示為:a+3=k(b-2)(k≠0)
二、一次函數(shù)的圖象
正比例函數(shù)和一次函數(shù)的圖象都是一條直線,所以對于其解析式也稱為“直線y=kx+b,直線y=kx”。因為一次函數(shù)的圖象是一條直線,所以在畫一次函數(shù)的圖象時,只要描出兩個點,在通過兩點作直線即可。
1、畫正比例函數(shù)y=kx(k≠0的常數(shù))的圖象時,只需要這兩個特殊點:(0,0)和(1,k)兩點;
2、畫一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象時,只需要找出它與坐標軸的兩個交點即可。一次函數(shù)與x軸的交點坐標是:(0,b),與y軸的交點坐標是:(-,0)
3、若兩個不同的一次函數(shù)的一次項的系數(shù)相同,則這它們的圖象平行。
4、將y=kx的圖象沿著沿著軸向上(b>0)或向下(b<0)平移|b|各單位長度即可得到y(tǒng)=kx+b。
5、求兩一次函數(shù)的交點坐標:聯(lián)立解兩各函數(shù)解析式得到的二元一次方程組,求的自變量x的值為交點的橫坐標,求出的y的值為交點的縱坐標。
三、一次函數(shù)的性質(zhì)
一次函數(shù)的性質(zhì)是由k來決定的。
1、正比例函數(shù)y=kx(k≠0的常數(shù))的性質(zhì)
(1)當k>0時,圖象經(jīng)過一、三象限,y隨x的增大而增大,這時函數(shù)圖象從左到右上升。
(2)當k<0時,圖象經(jīng)過二、四象限,y隨x的增大而減小,這時函數(shù)圖象從左到右下降。
2、一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的性質(zhì)
(1)當k>0時,①當b>0時,圖象經(jīng)過一、三、二象限,y隨x的增大而增大,這時函數(shù)圖象從左到右上升。②當b<0時,圖象經(jīng)過一、三、四象限,y隨x的增大而增大,這時函數(shù)圖象從左到右上升。
(2)當k<0時,①當b>0時,圖象經(jīng)過二、四、一象限,y隨x的增大而減小,這時函數(shù)圖象從左到右下降。②當b<0時,圖象經(jīng)過二、四、一象限,y隨x的增大而減小,這時函數(shù)圖象從左到右下降。
四、確定正比例函數(shù)好一次函數(shù)的解析式
1、意義:
(1)確定一個正比例函數(shù),就是要確定正比例函數(shù)y=kx(k≠0的常數(shù))中的常數(shù)k;
(2)確定一個一次函數(shù),需要確定一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)中常數(shù)k和b。
2、待定系數(shù)法
(1)先設(shè)待求函數(shù)關(guān)系式(其中含有未知的系數(shù)),再根據(jù)條件列出方程或方程組,求出未知系數(shù),從而得到所求結(jié)果的方法,叫做待定系數(shù)法。
(2)用待定系數(shù)法求函數(shù)關(guān)系式的一般方法:①設(shè)出含有待定系數(shù)的函數(shù)關(guān)系式;②把已知條件(自變量與函數(shù)的對應(yīng)值)代入關(guān)系式,得到關(guān)于待定系數(shù)方程(組);③解方程(組),求出待定系數(shù);④將求得的待定系數(shù)的值代回所設(shè)的關(guān)系式中,從而確定出函數(shù)關(guān)系式。
五、一次函數(shù)(正比例函數(shù))的應(yīng)用。與方程的應(yīng)用差不多,注意審題步驟。
反比例函數(shù)
一、反比例函數(shù)
1、定義:形如y=(k≠0的常數(shù))的函數(shù)叫做反比例函數(shù)。
2、對于反比例函數(shù):
(1)掌握其形式y(tǒng)=,且k為常數(shù),同時不能為0;等號左邊是函數(shù)y,右邊是一個分式,分子是一個不為0的常數(shù),分母是自變量x,若把反比例函數(shù)寫成y=kx-1,則x的系數(shù)為-1;自變量x的取值范圍是x≠0的一切實數(shù),函數(shù)y的取值范圍也是不為0的一切實數(shù);
(2)將y=轉(zhuǎn)化為xy=k,由此可得反比例函數(shù)中的兩個變量的積為定值,即某兩個變量的積為一定值時,則這兩個變量就成反比例關(guān)系。
(3)“反比例函數(shù)”與“成反比例”之間的區(qū)別在于,前者是一種函數(shù)關(guān)系,而后者是一種比例關(guān)系,不一定是反比例函數(shù),如說s與t2成反比例,可設(shè)為s=(k≠0的常數(shù)),但這顯然不是反比例函數(shù)。
二、用待定系數(shù)法求反比例函數(shù)表達式。由于反比例函數(shù)y=中只有一個待定系數(shù),因此只需要一組對應(yīng)值,即可求k的值,從而確定其表達式。
三、反比例函數(shù)的圖象
1、意義:
(1)名稱:雙曲線,它有兩個分支,分別位于一、三或二、四象限;
(2)這兩個分支關(guān)于原點成中心對稱;
(3)由于反比例函數(shù)自變量x≠0,函數(shù)y≠0,所以反比例函數(shù)的圖象與x軸和y軸都沒有交點,無限接近坐標軸,永遠不能到達坐標軸。
2、畫法(描點法):(1)列表。自變量的值應(yīng)在0的兩邊取值,各取三各以上,共六對互為相反數(shù)的數(shù)對,填y值時,只需計算出自變量對應(yīng)的函數(shù)值即可。(2)描點:先畫出反比例函數(shù)一側(cè)(即一個象限內(nèi)的分支),在對稱地畫出另一側(cè)(另一分值);(3)連線:按照從左到右的順序用平滑曲線連接各點并延伸,注意雙曲線的兩個分支是斷開的,延伸部分有逐漸靠近坐標軸的趨勢,但永遠不能與坐標軸相交。
八年級數(shù)學(xué)練習(xí)題
1、客車由甲城開往乙城要10小時,貨車由乙城開往甲城要15小時,兩車同時從兩城相向開出,相遇時客車比貨車多行96千米,甲乙兩城之間的公路長多少千米?
2、甲乙兩地相距1800千米,一架飛機從甲地飛往乙地,每小時飛行360千米,返回時順風(fēng),比去時少用1小時.往返平均每小時飛行多少千米?
3、一列火車每小時行68千米,另一列火車每小時行76千米,這兩列火車分別從甲乙兩站同時相對開出,行了5/6小時后還相距兩站之間的鐵路長的1/4,甲乙兩站之間的鐵路長多少千米?
4、兩輛汽車同時從東、西兩站相對開出,第一次在離車站60千米的地方相遇,之后兩車繼續(xù)以原來速度前進,各車到站后立即返回,又在離中點30千米處相遇,兩站相距多少千米?
5、甲、乙兩車分別從東、西兩站同時相對開出。第一次相遇時,甲車行了80千米,兩車繼續(xù)以原來速度前進,各車到站后立即返回,第二次相遇地點在第一次相遇地點東側(cè)40千米處。東、西兩站相距多少千米?
八年級下學(xué)期數(shù)學(xué)教學(xué)計劃
一、學(xué)情分析
八年級是初中學(xué)習(xí)過程中的關(guān)鍵時期,學(xué)生基礎(chǔ)的好壞,直接影響到將來是否能升學(xué)。有少數(shù)同學(xué)基礎(chǔ)特差,問題較嚴重。要在本期獲得理想成績,老師和學(xué)生都要付出努力,查漏補缺,充分發(fā)揮學(xué)生學(xué)習(xí)主體作用,注重方法,培養(yǎng)能力。在學(xué)生所學(xué)知識的掌握程度上,整個班級已經(jīng)開始出現(xiàn)兩極分化了,對優(yōu)生來說,能夠透徹理解知識,知識間的內(nèi)在聯(lián)系也較為清楚,對后進生來說,簡單的基礎(chǔ)知識還不能有效的掌握,成績較差,學(xué)生仍然缺少大量的推理題訓(xùn)練,推理的思考方法與寫法上均存在著一定的困難,對幾何有畏難情緒,相關(guān)知識學(xué)得不很透徹。學(xué)生的邏輯推理、邏輯思維能力,計算能力需要得到加強,以提升學(xué)生的整體成績,應(yīng)在合適的時候補充課外知識,拓展學(xué)生的知識面,提升學(xué)生素質(zhì);在學(xué)習(xí)態(tài)度上,絕大部分學(xué)生上課能全神貫注,積極的投入到學(xué)習(xí)中去,少數(shù)幾個學(xué)生對數(shù)學(xué)處于一種放棄的心態(tài),課堂作業(yè),大部分學(xué)生能認真完成,少數(shù)學(xué)生需要教師督促,這一少數(shù)學(xué)生也成為老師的重點牽掛對象,課堂家庭作業(yè),學(xué)生完成的質(zhì)量要打折扣;學(xué)生的學(xué)習(xí)習(xí)慣養(yǎng)成還不理想,預(yù)習(xí)的習(xí)慣,進行總結(jié)的習(xí)慣,自習(xí)課專心致至學(xué)習(xí)的習(xí)慣,主動糾正(考試、作業(yè)后)錯誤的習(xí)慣,比較多的學(xué)生不具有,需要教師的督促才能做。
二、教材分析
第十六章二次根式本章的主要內(nèi)容是二次根式的概念及二次根式的加減乘除運算。本章的重點是二次根式的運算,難點是對二次根式進行化簡,二次根式的取值范圍等。
第十七章 勾股定理 本章的主要內(nèi)容是勾股定理及逆定理的概念。本章要使學(xué)生能運用勾股定理解決簡單問題、用勾股定理的逆定理判定直角三角形。同時注重介紹數(shù)學(xué)文化。本章的重點是勾股定理及其證明,直角三角形的邊角關(guān)系,解直角三角形(三角形邊角關(guān)系的應(yīng)用),難點是運用靈活運用勾股定理解決實際問題,對銳角三角函數(shù)的理解及其合理應(yīng)用,解決實際問題。
第十八章平行四邊形本章的主要內(nèi)容是掌握各種四邊形的概念、性質(zhì)、判定及它們之間的關(guān)系并能應(yīng)用相關(guān)知識進行證明和計算。本章的重點是平行四邊形的定義、性質(zhì)和判定。難點是平行四邊形與各種特殊平行四邊形之間的聯(lián)系和區(qū)別。本章的教學(xué)內(nèi)容聯(lián)系比較緊密,研究問題的思路和方法也類似,推理論證的難度也不大,教學(xué)中要注意用“集合”的思想,分清四邊形的從屬關(guān)系,梳理它們的性質(zhì)和判定方法。
第十九章一次函數(shù)通過對變量的考察,體會函數(shù)的概念,并進一步研究其中最為簡單的一種函數(shù)——一次函數(shù)。了解函數(shù)的有關(guān)性質(zhì)和研究方法,并初步形成利用函數(shù)的觀點認識現(xiàn)實世界的意識和能力。在教材中,通過體現(xiàn)“問題情境——建立數(shù)學(xué)模型——概念、規(guī)律、應(yīng)用與拓展”的模式,讓學(xué)生從實際問題情境中抽象出函數(shù)以及一次函數(shù)的概念,并進行探索一次函數(shù)及其圖像的性質(zhì),最后利用一次函數(shù)及其圖像解決有關(guān)現(xiàn)實問題;同時在教學(xué)順序上,將正比例函數(shù)納入一次函數(shù)的研究中去。教材注意新舊知識的比較與聯(lián)系,如在教材中,加強了一次函數(shù)與一次方程(組)、一次不等式的聯(lián)系等。
第二十章 數(shù)據(jù)的分析 本章是在前面學(xué)習(xí)數(shù)據(jù)的描述的基礎(chǔ)上的進一步學(xué)習(xí)。本章的主要內(nèi)容是研究平均數(shù)、中位數(shù)、眾數(shù)、極差、方差等統(tǒng)計量的統(tǒng)計意義,并能運用這些統(tǒng)計量分析數(shù)據(jù)的集中趨勢和離散情況。教學(xué)中要合理使用計算器,發(fā)揮計算器在處理數(shù)據(jù)中的作用,使學(xué)生的學(xué)習(xí)重點集中在理解統(tǒng)計量的統(tǒng)計意義和體會統(tǒng)計思想上來
三、教學(xué)措施
1、認真學(xué)習(xí)鉆研新課標,掌握教材;課堂內(nèi)講授與練習(xí)相結(jié)合,及時根據(jù)反饋信息,掃除學(xué)習(xí)中的障礙點。
2、認真?zhèn)湔n、精心授課,抓緊課堂四十五分鐘,認真上好每一堂課,盡力摧行小組合作,爭取充分掌握學(xué)生動態(tài),努力提高教學(xué)效果。
3、抓住關(guān)鍵、分散難點、突出重點,在培養(yǎng)學(xué)生能力上下功夫;落實每一堂課后輔助,查漏補缺。
4、不斷改進教學(xué)方法,提高自身業(yè)務(wù)素養(yǎng)。積極與其它老師溝通,加強教研教改,提高教學(xué)水平。
5、教學(xué)中注重自主學(xué)習(xí)、合作學(xué)習(xí)、探究學(xué)習(xí)。
6、經(jīng)常聽取學(xué)生良好的合理化建議。