国产成人v爽在线免播放观看,日韩欧美色,久久99国产精品久久99软件,亚洲综合色网站,国产欧美日韩中文久久,色99在线,亚洲伦理一区二区

學習啦>學習方法>備考資料>

人教版初中數(shù)學知識點最新

時間: 淑燕0 分享

數(shù)學無時無處不存在,我們將數(shù)學使用在生活中,為我們的生活提供了很大的便利,下面是小編為大家整理的人教版初中數(shù)學知識點,歡迎閱讀,希望能幫助到大家!

初中數(shù)學知識點

絕對值

⒈絕對值的幾何定義

一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做a的絕對值,記作|a|。

2.絕對值的代數(shù)定義

⑴一個正數(shù)的絕對值是它本身;⑵一個負數(shù)的絕對值是它的相反數(shù);⑶0的絕對值是0.

可用字母表示為:

①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。

可歸納為①:a≥0,<═>|a|=a(非負數(shù)的絕對值等于本身;絕對值等于本身的數(shù)是非負數(shù)。)②a≤0,<═>|a|=-a(非正數(shù)的絕對值等于其相反數(shù);絕對值等于其相反數(shù)的數(shù)是非正數(shù)。)經(jīng)典考題

如數(shù)軸所示,化簡下列各數(shù)

|a|,|b|,|c|,|a-b|,|a-c|,|b+c|

解:由題知道,因為a>0,b<0,c<0,a-b>0,a-c>0,b+c<0,

所以|a|=a,|b|=-b,|c|=-c,|a-b|=a-b,|a-c|=a-c,|b+c|=-(b+c)=-b-c

3.絕對值的性質(zhì)

任何一個有理數(shù)的絕對值都是非負數(shù),也就是說絕對值具有非負性。所以,a取任何有理數(shù),都有|a|≥0。即⑴0的絕對值是0;絕對值是0的數(shù)是0.即:a=0<═>|a|=0;

⑵一個數(shù)的絕對值是非負數(shù),絕對值最小的數(shù)是0.即:|a|≥0;

⑶任何數(shù)的絕對值都不小于原數(shù)。即:|a|≥a;

⑷絕對值是相同正數(shù)的數(shù)有兩個,它們互為相反數(shù)。即:若|x|=a(a>0),則x=±a;

⑸互為相反數(shù)的兩數(shù)的絕對值相等。即:|-a|=|a|或若a+b=0,則|a|=|b|;

⑹絕對值相等的兩數(shù)相等或互為相反數(shù)。即:|a|=|b|,則a=b或a=-b;

⑺若幾個數(shù)的絕對值的和等于0,則這幾個數(shù)就同時為0。即|a|+|b|=0,則a=0且b=0。

(非負數(shù)的常用性質(zhì):若幾個非負數(shù)的和為0,則有且只有這幾個非負數(shù)同時為0)

人教版初中數(shù)學知識點

第一章有理數(shù)

一、知識框架

二、知識概念

1.有理數(shù):

(1)凡能寫成 形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);p不是有理數(shù);

(2)有理數(shù)的分類: ① ②

2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線.

3.相反數(shù):

(1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;

(2)相反數(shù)的和為0 ? a+b=0 ? a、b互為相反數(shù).

4.絕對值:

(1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;

(2) 絕對值可表示為: 或 ;絕對值的問題經(jīng)常分類討論;

5.有理數(shù)比大?。?1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠比0大,負數(shù)永遠比0小;(3)正數(shù)大于一切負數(shù);(4)兩個負數(shù)比大小,絕對值大的反而小;(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù) > 0,小數(shù)-大數(shù) < 0.

6.互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若 a≠0,那么 的倒數(shù)是 ;若ab=1? a、b互為倒數(shù);若ab=-1? a、b互為負倒數(shù).

7. 有理數(shù)加法法則:

(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;

(2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

(3)一個數(shù)與0相加,仍得這個數(shù).

8.有理數(shù)加法的運算律:

(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).

9.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b).

10 有理數(shù)乘法法則:

(1)兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘;

(2)任何數(shù)同零相乘都得零;

(3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定.

11 有理數(shù)乘法的運算律:

(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac .

12.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù), .

13.有理數(shù)乘方的法則:

(1)正數(shù)的任何次冪都是正數(shù);

(2)負數(shù)的奇次冪是負數(shù);負數(shù)的偶次冪是正數(shù);注意:當n為正奇數(shù)時: (-a)n=-an或(a -b)n=-(b-a)n , 當n為正偶數(shù)時: (-a)n =an 或 (a-b)n=(b-a)n .

14.乘方的定義:

(1)求相同因式積的運算,叫做乘方;

(2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結果叫做冪;

15.科學記數(shù)法:把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學記數(shù)法.

16.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位.

17.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字.

18.混合運算法則:先乘方,后乘除,最后加減.

本章內(nèi)容要求學生正確認識有理數(shù)的概念,在實際生活和學習數(shù)軸的基礎上,理解正負數(shù)、相反數(shù)、絕對值的意義所在。重點利用有理數(shù)的運算法則解決實際問題.

體驗數(shù)學發(fā)展的一個重要原因是生活實際的需要.激發(fā)學生學習數(shù)學的興趣,教師培養(yǎng)學生的觀察、歸納與概括的能力,使學生建立正確的數(shù)感和解決實際問題的能力。教師在講授本章內(nèi)容時,應該多創(chuàng)設情境,充分體現(xiàn)學生學習的主體性地位。

第二章整式的加減

一.知識框架

二.知識概念

1.單項式:在代數(shù)式中,若只含有乘法(包括乘方)運算?;螂m含有除法運算,但除式中不含字母的一類代數(shù)式叫單項式.

2.單項式的系數(shù)與次數(shù):單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的次數(shù).

3.多項式:幾個單項式的和叫多項式.

4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù)。

通過本章學習,應使學生達到以下學習目標:

1. 理解并掌握單項式、多項式、整式等概念,弄清它們之間的區(qū)別與聯(lián)系。

2. 理解同類項概念,掌握合并同類項的方法,掌握去括號時符號的變化規(guī)律,能正確地進行同類項的合并和去括號。在準確判斷、正確合并同類項的基礎上,進行整式的加減運算。

3. 理解整式中的字母表示數(shù),整式的加減運算建立在數(shù)的運算基礎上;理解合并同類項、去括號的依據(jù)是分配律;理解數(shù)的運算律和運算性質(zhì)在整式的加減運算中仍然成立。

4.能夠分析實際問題中的數(shù)量關系,并用還有字母的式子表示出來。

在本章學習中,教師可以通過讓學生小組討論、合作學習等方式,經(jīng)歷概念的形成過程,初步培養(yǎng)學生觀察、分析、抽象、概括等思維能力和應用意識。

第三章一元一次方程

一.知識框架

二.知識概念

1.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程.

2.一元一次方程的標準形式: ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).

3.一元一次方程解法的一般步驟: 整理方程 …… 去分母 …… 去括號 …… 移項 …… 合并同類項 …… 系數(shù)化為1 …… (檢驗方程的解).

4.列一元一次方程解應用題:

(1)讀題分析法:………… 多用于“和,差,倍,分問題”

仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關鍵字列出文字等式,并且據(jù)題意設出未知數(shù),最后利用題目中的量與量的關系填入代數(shù)式,得到方程.

(2)畫圖分析法: ………… 多用于“行程問題”

利用圖形分析數(shù)學問題是數(shù)形結合思想在數(shù)學中的體現(xiàn),仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關系(可把未知數(shù)看做已知量),填入有關的代數(shù)式是獲得方程的基礎.

11.列方程解應用題的常用公式:

(1)行程問題: 距離=速度·時間 ;

(2)工程問題: 工作量=工效·工時 ;

(3)比率問題: 部分=全體·比率 ;

(4)順逆流問題: 順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;

(5)商品價格問題: 售價=定價·折· ,利潤=售價-成本, ;

(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab, C正方形=4a,

S正方形=a2,S環(huán)形=π(R2-r2),V長方體=abc ,V正方體=a3,V圓柱=πR2h ,V圓錐= πR2h.

本章內(nèi)容是代數(shù)學的核心,也是所有代數(shù)方程的基礎。豐富多彩的問題情境和解決問題的快樂很容易激起學生對數(shù)學的樂趣,所以要注意引導學生從身邊的問題研究起,進行有效的數(shù)學活動和合作交流,讓學生在主動學習、探究學習的過程中獲得知識,提升能力,體會數(shù)學思想方法。

初中數(shù)學知識點總結

1.數(shù)軸

(1)數(shù)軸的概念:規(guī)定了原點、正方向、單位長度的直線叫做數(shù)軸.

數(shù)軸的三要素:原點,單位長度,正方向。

(2)數(shù)軸上的點:所有的有理數(shù)都可以用數(shù)軸上的點表示,但數(shù)軸上的點不都表示有理數(shù).(一般取右方向為正方向,數(shù)軸上的點對應任意實數(shù),包括無理數(shù).)

(3)用數(shù)軸比較大?。阂话銇碚f,當數(shù)軸方向朝右時,右邊的數(shù)總比左邊的數(shù)大。

重點知識:

初中數(shù)學第一課,認識正數(shù)與負數(shù)!新初一的來~

2.相反數(shù)

(1)相反數(shù)的概念:只有符號不同的兩個數(shù)叫做互為相反數(shù).

(2)相反數(shù)的意義:掌握相反數(shù)是成對出現(xiàn)的,不能單獨存在,從數(shù)軸上看,除0外,互為相反數(shù)的兩個數(shù),它們分別在原點兩旁且到原點距離相等。

(3)多重符號的化簡:與“+”個數(shù)無關,有奇數(shù)個“﹣”號結果為負,有偶數(shù)個“﹣”號,結果為正。

(4)規(guī)律方法總結:求一個數(shù)的相反數(shù)的方法就是在這個數(shù)的前邊添加“﹣”,如a的相反數(shù)是﹣a,m+n的相反數(shù)是﹣(m+n),這時m+n是一個整體,在整體前面添負號時,要用小括號。

3.絕對值

1.概念:數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值。

①互為相反數(shù)的兩個數(shù)絕對值相等;

②絕對值等于一個正數(shù)的數(shù)有兩個,絕對值等于0的數(shù)有一個,沒有絕對值等于負數(shù)的數(shù).

③有理數(shù)的絕對值都是非負數(shù).

2.如果用字母a表示有理數(shù),則數(shù)a

絕對值要由字母a本身的取值來確定:

①當a是正有理數(shù)時,a的絕對值是它本身a;

②當a是負有理數(shù)時,a的絕對值是它的相反數(shù)﹣a;

③當a是零時,a的絕對值是零.

即|a|={a(a>0)0(a=0)﹣a(a<0)

重點知識:

初中數(shù)學第二課,有理數(shù)的相關知識!新初一的來~

4.有理數(shù)大小比較

1.有理數(shù)的大小比較

比較有理數(shù)的大小可以利用數(shù)軸,他們從左到有的順序,即從大到小的順序(在數(shù)軸上表示的兩個有理數(shù),右邊的數(shù)總比左邊的數(shù)大);也可以利用數(shù)的性質(zhì)比較異號兩數(shù)及0的大小,利用絕對值比較兩個負數(shù)的大小。

2.有理數(shù)大小比較的法則:

①正數(shù)都大于0;

②負數(shù)都小于0;

③正數(shù)大于一切負數(shù);

④兩個負數(shù),絕對值大的其值反而小。

規(guī)律方法·有理數(shù)大小比較的三種方法:

(1)法則比較:正數(shù)都大于0,負數(shù)都小于0,正數(shù)大于一切負數(shù).兩個負數(shù)比較大小,絕對值大的反而小.

(2)數(shù)軸比較:在數(shù)軸上右邊的點表示的數(shù)大于左邊的點表示的數(shù).

(3)作差比較:

若a﹣b>0,則a>b;

若a﹣b<0,則a

若a﹣b=0,則a=b.

5.有理數(shù)的減法

有理數(shù)減法法則

減去一個數(shù),等于加上這個數(shù)的相反數(shù)。 即:a﹣b=a+(﹣b)

方法指引:

①在進行減法運算時,首先弄清減數(shù)的符號;

②將有理數(shù)轉(zhuǎn)化為加法時,要同時改變兩個符號:一是運算符號(減號變加號); 二是減數(shù)的性質(zhì)符號(減數(shù)變相反數(shù));

注意:在有理數(shù)減法運算時,被減數(shù)與減數(shù)的位置不能隨意交換;因為減法沒有交換律。

減法法則不能與加法法則類比,0加任何數(shù)都不變,0減任何數(shù)應依法則進行計算。

6.有理數(shù)的乘法

(1)有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘。

(2)任何數(shù)同零相乘,都得0。

(3)多個有理數(shù)相乘的法則:

①幾個不等于0的數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,當負因數(shù)有奇數(shù)個時,積為負;當負因數(shù)有偶數(shù)個時,積為正.

②幾個數(shù)相乘,有一個因數(shù)為0,積就為0。

(4)方法指引

①運用乘法法則,先確定符號,再把絕對值相乘.

②多個因數(shù)相乘,看0因數(shù)和積的符號當先,這樣做使運算既準確又簡單.

7.有理數(shù)的混合運算

1.有理數(shù)混合運算順序:先算乘方,再算乘除,最后算加減;

同級運算,應按從左到右的順序進行計算;如果有括號,要先做括號內(nèi)的運算。

2.進行有理數(shù)的混合運算時,注意各個運算律的運用,使運算過程得到簡化。

有理數(shù)混合運算的四種運算技巧:

(1)轉(zhuǎn)化法:一是將除法轉(zhuǎn)化為乘法,二是將乘方轉(zhuǎn)化為乘法,三是在乘除混合運算中,通常將小數(shù)轉(zhuǎn)化為分數(shù)進行約分計算.

(2)湊整法:在加減混合運算中,通常將和為零的兩個數(shù),分母相同的兩個數(shù),和為整數(shù)的兩個數(shù),乘積為整數(shù)的兩個數(shù)分別結合為一組求解.

(3)分拆法:先將帶分數(shù)分拆成一個整數(shù)與一個真分數(shù)的和的形式,然后進行計算.

(4)巧用運算律:在計算中巧妙運用加法運算律或乘法運算律往往使計算更簡便.

8.科學記數(shù)法—表示較大的數(shù)

1.科學記數(shù)法:把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),n是正整數(shù),這種記數(shù)法叫做科學記數(shù)法。

(科學記數(shù)法形式:a×10n,其中1≤a<10,n為正整數(shù))

2.規(guī)律方法總結

①科學記數(shù)法中a的要求和10的指數(shù)n的表示規(guī)律為關鍵,由于10的指數(shù)比原來的整數(shù)位數(shù)少1;按此規(guī)律,先數(shù)一下原數(shù)的整數(shù)位數(shù),即可求出10的指數(shù)n。

②記數(shù)法要求是大于10的數(shù)可用科學記數(shù)法表示,實質(zhì)上絕對值大于10的負數(shù)同樣可用此法表示,只是前面多一個負號.

重點知識:

初中數(shù)學第八課:科學計數(shù)法,新初一的來~

9.代數(shù)式求值

(1)代數(shù)式的值:用數(shù)值代替代數(shù)式里的字母,計算后所得的結果叫做代數(shù)式的值。

(2)代數(shù)式的求值:求代數(shù)式的值可以直接代入、計算.如果給出的代數(shù)式可以化簡,要先化簡再求值。

題型簡單總結以下三種:

①已知條件不化簡,所給代數(shù)式化簡;

②已知條件化簡,所給代數(shù)式不化簡;

③已知條件和所給代數(shù)式都要化簡.

10.規(guī)律型:圖形的變化類

首先應找出圖形哪些部分發(fā)生了變化,是按照什么規(guī)律變化的,通過分析找到各部分的變化規(guī)律后直接利用規(guī)律求解。探尋規(guī)律要認真觀察、仔細思考,善用聯(lián)想來解決這類問題。

11.等式的性質(zhì)

1.等式的性質(zhì)

性質(zhì)1 等式兩邊加同一個數(shù)(或式子)結果仍得等式;

性質(zhì)2 等式兩邊乘同一個數(shù)或除以一個不為零的數(shù),結果仍得等式。

2.利用等式的性質(zhì)解方程

利用等式的性質(zhì)對方程進行變形,使方程的形式向x=a的形式轉(zhuǎn)化.

應用時要注意把握兩關:

①怎樣變形;

②依據(jù)哪一條,變形時只有做到步步有據(jù),才能保證是正確的.

新初一第二章知識點總結:整式的加減,為孩子收藏!

12.一元一次方程的解

定義:使一元一次方程左右兩邊相等的未知數(shù)的值叫做一元一次方程的解。

把方程的解代入原方程,等式左右兩邊相等。

13.解一元一次方程

1.解一元一次方程的一般步驟

去分母、去括號、移項、合并同類項、系數(shù)化為1,這僅是解一元一次方程的一般步驟,針對方程的特點,靈活應用,各種步驟都是為使方程逐漸向x=a形式轉(zhuǎn)化。

2.解一元一次方程時先觀察方程的形式和特點,若有分母一般先去分母;

若既有分母又有括號,且括號外的項在乘括號內(nèi)各項后能消去分母,就先去括號。

3.在解類似于“ax+bx=c”的方程時,將方程左邊,按合并同類項的方法并為一項即(a+b)x=c。

使方程逐漸轉(zhuǎn)化為ax=b的最簡形式體現(xiàn)化歸思想。

將ax=b系數(shù)化為1時,要準確計算,一弄清求x時,方程兩邊除以的是a還是b,尤其a為分數(shù)時;二要準確判斷符號,a、b同號x為正,a、b異號x為負。

14.一元一次方程的應用

1.一元一次方程解應用題的類型

(1)探索規(guī)律型問題;

(2)數(shù)字問題;

(3)銷售問題(利潤=售價﹣進價,利潤率=利潤進價×100%);

(4)工程問題(①工作量=人均效率×人數(shù)×時間;②如果一件工作分幾個階段完成,那么各階段的工作量的和=工作總量);

(5)行程問題(路程=速度×時間);

(6)等值變換問題;

(7)和,差,倍,分問題;

(8)分配問題;

(9)比賽積分問題;

(10)水流航行問題(順水速度=靜水速度+水流速度;逆水速度=靜水速度﹣水流速度).

2.利用方程解決實際問題的基本思路

首先審題找出題中的未知量和所有的已知量,直接設要求的未知量或間接設一關鍵的未知量為x,然后用含x的式子表示相關的量,找出之間的相等關系列方程、求解、作答,即設、列、解、答。

列一元一次方程解應用題的五個步驟

(1)審:仔細審題,確定已知量和未知量,找出它們之間的等量關系.

(2)設:設未知數(shù)(x),根據(jù)實際情況,可設直接未知數(shù)(問什么設什么),也可設間接未知數(shù).

(3)列:根據(jù)等量關系列出方程.

(4)解:解方程,求得未知數(shù)的值.

(5)答:檢驗未知數(shù)的值是否正確,是否符合題意,完整地寫出答句.

15.正方體相對兩個面上的文字

(1)對于此類問題一般方法是用紙按圖的樣子折疊后可以解決,或是在對展開圖理解的基礎上直接想象.

(2)從實物出發(fā),結合具體的問題,辨析幾何體的展開圖,通過結合立體圖形與平面圖形的轉(zhuǎn)化,建立空間觀念,是解決此類問題的關鍵.

(3)正方體的展開圖有11種情況,分析平面展開圖的各種情況后再認真確定哪兩個面的對面.

16.直線、射線、線段

(1)直線、射線、線段的表示方法

①直線:用一個小寫字母表示,如:直線l,或用兩個大寫字母(直線上的)表示,如直線AB.

②射線:是直線的一部分,用一個小寫字母表示,如:射線l;用兩個大寫字母表示,端點在前,如:射線OA.注意:用兩個字母表示時,端點的字母放在前邊.

③線段:線段是直線的一部分,用一個小寫字母表示,如線段a;用兩個表示端點的字母表示,如:線段AB(或線段BA)。

(2)點與直線的位置關系:

①點經(jīng)過直線,說明點在直線上;

②點不經(jīng)過直線,說明點在直線外。

17.兩點間的距離

(1)兩點間的距離:連接兩點間的線段的長度叫兩點間的距離。

(2)平面上任意兩點間都有一定距離,它指的是連接這兩點的線段的長度,學習此概念時,注意強調(diào)最后的兩個字“長度”,也就是說,它是一個量,有大小,區(qū)別于線段,線段是圖形.線段的長度才是兩點的距離.可以說畫線段,但不能說畫距離。

18.角的概念

(1)角的定義:有公共端點是兩條射線組成的圖形叫做角,其中這個公共端點是角的頂點,這兩條射線是角的兩條邊。

(2)角的表示方法:角可以用一個大寫字母表示,也可以用三個大寫字母表示.其中頂點字母要寫在中間,唯有在頂點處只有一個角的情況,才可用頂點處的一個字母來記這個角,否則分不清這個字母究竟表示哪個角.角還可以用一個希臘字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯數(shù)字(∠1,∠2…)表示。

(3)平角、周角:角也可以看作是由一條射線繞它的端點旋轉(zhuǎn)而形成的圖形,當始邊與終邊成一條直線時形成平角,當始 邊與終邊旋轉(zhuǎn)重合時,形成周角。

(4)角的度量:度、分、秒是常用的角的度量單位.1度=60分,即1°=60′,1分=60秒,即1′=60″。

19.角平分線的定義

從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線叫做這個角的平分線。

①∠AOB是∠AOC和∠BOC的和,記作:∠AOB=∠AOC+∠BOC.∠AOC是∠AOB和∠BOC的差,記作:∠AOC=∠AOB﹣∠BOC。

②若射線OC是∠AOB的三等分線,則∠AOB=3∠BOC或∠BOC=13∠AOB。

20.度分秒的運算

(1)度、分、秒的加減運算。

在進行度分秒的加減時,要將度與度,分與分,秒與秒相加減,分秒相加,逢60要進位,相減時,要借1化60。

(2)度、分、秒的乘除運算

①乘法:度、分、秒分別相乘,結果逢60要進位。

②除法:度、分、秒分別去除,把每一次的余數(shù)化作下一級單位進一步去除。

21.由三視圖判斷幾何體

(1)由三視圖想象幾何體的形狀,首先,應分別根據(jù)主視圖、俯視圖和左視圖想象幾何體的前面、上面和左側面的形狀,然后綜合起來考慮整體形狀。

(2)由物體的三視圖想象幾何體的形狀是有一定難度的,可以從以下途徑進行分析:

①根據(jù)主視圖、俯視圖和左視圖想象幾何體的前面、上面和左側面的形狀,以及幾何體的長、寬、高;

②從實線和虛線想象幾何體看得見部分和看不見部分的輪廓線;

③熟記一些簡單的幾何體的三視圖對復雜幾何體的想象會有幫助;

④利用由三視圖畫幾何體與有幾何體畫三視圖的互逆過程,反復練習,不斷總結方法。

初中數(shù)學怎么學

正如我們把一份試卷劃分成基礎題,中檔題和壓軸題。初中數(shù)學的學習也可以分成三個層次。

第一層次是學數(shù)學知識,建立基本初中數(shù)學的知識框架,并會基本運用。做到這點,那么基礎題都不成問題。在建立基本初中數(shù)學的知識框架,基本概念一定要清晰,尤其要注意易錯點。相信很多初中學生印象深刻的是在初一學有理數(shù)和實數(shù)的這兩章的概念時,總是不小心就掉進出題老師挖的坑里。舉個例,填空題根號16的平方根,不少學生后寫4或正負4,關鍵是自己檢查還檢查不出了,很多學生會忽略16自帶根號,正確的做法是先運算16的算數(shù)平方根得4,再算4的平方根得正負2。我想任何一科學科都不能忽略基礎。如建高樓大廈,只有你的基礎打得夠扎實,你才能建更高的樓層,而不怕大風大雨。

第二層次是融會貫通知識點,學會綜合運用。這點說難不難,說易也不易。大家會發(fā)現(xiàn)每個學校都是成績處于平均水平的人是最多的,往高分走人數(shù)會逐漸減少,往低分走人數(shù)也會減少,基本處于正態(tài)分布曲線。大家會發(fā)現(xiàn)只要對知識理解透徹,再加上訓練達到靈活運用的程度,基本上中檔題是很容易的。對知識的融會貫通,并不是簡單的反復刷題就可以做到的,而是要做針對性的匹配練習與變式思考題。這就是為什么有些學霸可以用一樣的練習時間,輕松突破125分。當然,130的界限又需要達到另一個層次了。

第三層次是拓展重難點,總結方法,變式訓練邏輯思維。這個層次第一要點是拓展好同步課程的重難點,如初二的一次函數(shù)課內(nèi)知識有兩直線平行,斜率K相等,但是可以拓展兩直線垂直,斜率之積為負一。這點在初三的直角三角形存在性問題的壓軸題型會有運用。說到壓軸題型,學霸和普通學生的區(qū)別是,普通學生就知道勾股逆定理和直接算90度角的直接知識點的思路,而學霸會總結基本的知識點出發(fā)的勾股定理結合距離公式,而推導90度角還有一垂直(如直徑所對圓周角,相切等轉(zhuǎn)化成圓問題),兩垂直(轉(zhuǎn)化為函數(shù)的斜率之積為負一,或兩垂直相似等)三垂直(三垂直相似,三垂直全等逆向證角等)。壓軸題題型的方法總結只是第二步。你想從學霸突破成為學神的關鍵是掌握學習的邏輯思維。

數(shù)學是一科具有嚴謹?shù)南到y(tǒng)的邏輯思維與分析的科學。最明顯的是從小學剛升初一的學生身上,你會發(fā)現(xiàn)在小學通過勤奮,數(shù)學總能考接近滿分的一群學生中,上了初中后,數(shù)學開始明顯有分層了。在初中有一句話,叫初一不上不下,初二兩級分化。原因很簡單,初二數(shù)學開始接觸更高層次的幾何綜合及相關輔助線了。幾何綜合對思路分析,過程推導的邏輯思維要求更高,而輔助線對學生的幾何構造補充能力提出了更高要求。

所以,你會發(fā)現(xiàn)如果你掌握了壓軸題型的思路方法還不夠,必須去做變式訓練去鍛煉自己的邏輯思維。如果你是定向的邏輯思維,你會發(fā)現(xiàn)一旦開始的思路不對,你就會卡思路,甚至鉆牛角尖出不來。如果你是發(fā)散性的思維,你會嘗試最有可能的思路,錯了很快去試另一個可能性。而很多人的思維模式由于天賦和從小培養(yǎng)環(huán)境的影響,思維能力有一定的基礎,而初中生正是思維活躍高速發(fā)展的時期,所以應該多去鍛煉。

最后,總結一句話就是學好初中數(shù)學一要扎實基礎以便建高樓,二融會貫通懂綜合運用,三學會方法更要變式訓練邏輯思維。

人教版初中數(shù)學知識點最新相關文章

初三數(shù)學知識點歸納人教版

新人教版初中數(shù)學復習資料

八年級數(shù)學知識點整理歸納

初一數(shù)學上冊知識點歸納

初一數(shù)學人教版知識點歸納

人教版初中數(shù)學總復習資料有哪些

初二數(shù)學上冊知識點總結

初一人教版數(shù)學上冊知識點總結歸納

初一數(shù)學上冊知識點匯總歸納

七年級數(shù)學知識點大全

人教版初中數(shù)學知識點最新

數(shù)學無時無處不存在,我們將數(shù)學使用在生活中,為我們的生活提供了很大的便利,下面是小編為大家整理的人教版初中數(shù)學知識點,歡迎閱讀,希望能幫助到大家!初中數(shù)學知識點絕對值⒈絕對值的幾何定義一般地,數(shù)軸上表
推薦度:
點擊下載文檔文檔為doc格式
1076805