八年級下冊數(shù)學(xué)期末提綱
初中階段的數(shù)學(xué)綜合性已經(jīng)比較強(qiáng),想要一步登天的提升自己的成績顯然是不可能的,但是我們可以制定提綱去復(fù)習(xí),以下是小編給大家整理的八年級下冊數(shù)學(xué)期末提綱,希望對大家有所幫助,歡迎閱讀!
八年級下冊數(shù)學(xué)期末提綱
分式及基本性質(zhì)
一、分式的概念
1、分式的定義:如果A、B表示兩個整式,并且B中含有字母,那么式子叫做分式。
2、對于分式概念的理解,應(yīng)把握以下幾點(diǎn):
(1)分式是兩個整式相除的商。其中分子是被除式,分母是除式,分?jǐn)?shù)線起除號和括號的作用;(2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;(3)分母不能為零。
3、分式有意義、無意義的條件
(1)分式有意義的條件:分式的分母不等于0;
(2)分式無意義的條件:分式的分母等于0。
4、分式的值為0的條件:
當(dāng)分式的分子等于0,而分母不等于0時,分式的值為0。即,使=0的條件是:A=0,B≠0。
5、有理式
整式和分式統(tǒng)稱為有理式。整式分為單項(xiàng)式和多項(xiàng)式。
分類:有理式
單項(xiàng)式:由數(shù)與字母的乘積組成的代數(shù)式;
多項(xiàng)式:由幾個單項(xiàng)式的和組成的代數(shù)式。
二、分式的基本性質(zhì)
1、分式的基本性質(zhì):分式的分子與分母都乘以(或除以)同一個不等于零的整式,分式的值不變。
用式子表示為:==,其中M(M≠0)為整式。
2、通分:利用分式的基本性質(zhì),使分子和分母都乘以適當(dāng)?shù)恼?,不改變分式的值,把幾個異分母分式化成同分母的分式,這樣的分式變形叫做分式的通分。
通分的關(guān)鍵是:確定幾個分式的最簡公分母。確定最簡公分母的一般方法是:(1)如果各分母都是單項(xiàng)式,那么最簡公分母就是各系數(shù)的最小公倍數(shù)、相同字母的次冪、所有不同字母及指數(shù)的積。(2)如果各分母中有多項(xiàng)式,就先把分母是多項(xiàng)式的分解因式,再參照單項(xiàng)式求最簡公分母的方法,從系數(shù)、相同因式、不同因式三個方面去確定。
3、約分:根據(jù)分式的基本性質(zhì),約去分式的分子和分母的公因式,不改變分式的值,這樣的分式變形叫做分式的約分。
在約分時要注意:(1)如果分子、分母都是單項(xiàng)式,那么可直接約去分子、分母的公因式,即約去分子、分母系數(shù)的公約數(shù),相同字母的最低次冪;(2)如果分子、分母中至少有一個多項(xiàng)式就應(yīng)先分解因式,然后找出它們的公因式再約分;(3)約分一定要把公因式約完。
三、分式的符號法則:
(1)==-;(2)=;(3)-=
分式的運(yùn)算
一、分式的乘除法
1、法則:
(1)乘法法則:分式乘分式,用分子的積作為積的分子,分母的積作為積的分母。(意思就是,分式相乘,分子與分子相乘,分母與分母相乘)。
用式子表示:
(2)除法法則:分式除以分式,把除式的分子、分母顛倒位置后,再與被除式相乘。
用式子表示:
2、應(yīng)用法則時要注意:(1)分式中的符號法則與有理數(shù)乘除法中的符號法則相同,即“同號得正,異號得負(fù),多個負(fù)號出現(xiàn)看個數(shù),奇負(fù)偶正”;(2)當(dāng)分子分母是多項(xiàng)式時,應(yīng)先進(jìn)行因式分解,以便約分;(3)分式乘除法的結(jié)果要化簡到最簡的形式。
二、分式的乘方
1、法則:根據(jù)乘方的意義和分式乘法法則,分式的乘方就是把將分子、分母分別乘方,然后再相除。
用式子表示:(其中n為正整數(shù),a≠0)
2、注意事項(xiàng):(1)乘方時,一定要把分式加上括號;(2)在一個算式中同時含有乘方、乘法、除法時,應(yīng)先算乘方,再算乘除,有多項(xiàng)式時應(yīng)先因式分解,再約分;(3)最后結(jié)果要化到最簡。
三、分式的加減法
(一)同分母分式的加減法
1、法則:同分母分式相加減,分母不變,把分子相加減。
用式子表示:
2、注意事項(xiàng):(1)“分子相加減”是所有的“分子的整體”相加減,各個分子都應(yīng)有括號;當(dāng)分子是單項(xiàng)式時括號可以省略,但分母是多項(xiàng)式時,括號不能省略;(2)分式加減運(yùn)算的結(jié)果必須化成最簡分式或整式。
(二)異分母分式的加減法
1、法則:異分母分式相加減,先通分,轉(zhuǎn)化為同分母分式后,再加減。用式子表示:。
2、注意事項(xiàng):(1)在異分母分式加減法中,要先通分,這是關(guān)鍵,把異分母分式的加減法變成同分母分式的加減法。(2)若分式加減運(yùn)算中含有整式,應(yīng)視其分母為1,然后進(jìn)行通分。(3)當(dāng)分子的次數(shù)高于或等于分母的次數(shù)時,應(yīng)將其分離為整式與真分式之和的形式參與運(yùn)算,可使運(yùn)算簡便。
四、分式的混合運(yùn)算
1、運(yùn)算規(guī)則:分式的加、減、乘、除、乘方混合運(yùn)算,先乘方,再乘除,最后算加減。遇到括號時,要先算括號里面的。
2、注意事項(xiàng):(1)分式的混合運(yùn)算關(guān)鍵是弄清運(yùn)算順序;(2)有理數(shù)的運(yùn)算順序和運(yùn)算規(guī)律對分式運(yùn)算同樣適用,要靈活運(yùn)用交換律、結(jié)合律和分配律;(3)分式運(yùn)算結(jié)果必須化到最簡,能約分的要約分,保證運(yùn)算結(jié)果是最簡分式或整式。
可化為一元一次方程的分式方程
一、分式方程基本概念
1、定義:方程中含有分式,并且分母中含有未知數(shù)的方程叫做分式方程。
2、理解分式方程要明確兩點(diǎn):(1)方程中含有分式;(2)分式的分母含有未知數(shù)。
分式方程與整式方程區(qū)別就在于分母中是否含有未知數(shù)。
二、分式方程的解法
1、解分式方程的基本思想:化分式方程為整式方程。途徑:“去分母”。
方法是:方程兩邊都乘以各分式的最簡公分母,約去分母,化為整式方程求解。
2、解分式方程的一般步驟:
(1)去分母。即在方程兩邊都乘以各分式的最簡公分母,約去分母,把原分式方程化為整式方程;
(2)解這個整式方程;
(3)驗(yàn)根。驗(yàn)根方法:把整式方程的根代入最簡公分母,使最簡公分母不等于0的根是原分式方程的根,使最簡公分母為0的根是原分式方程的增根,必須舍去。這種驗(yàn)根方法不能檢查解方程過程中出現(xiàn)的計(jì)算錯誤,還可以采用另一種驗(yàn)根方法,即把求得的未知數(shù)的值代入原方程進(jìn)行檢驗(yàn),這種方法可以發(fā)現(xiàn)解方程過程中有無計(jì)算錯誤。
3、分式方程的增根。意義是:把分式方程化為整式方程后,解出的整式方程的根有時只是這個整式的方程的根而不是原分式方程的根,這種根就是增根,因此,解分式方程必須驗(yàn)根。
三、分式方程的應(yīng)用
1、意義:分式方程的應(yīng)用就是列分式方程解應(yīng)用題,它和列一元一次方程解應(yīng)用題的方法、步驟、解題思路基本相同,不同的是,因?yàn)橛辛朔质礁拍?,所列代?shù)式的關(guān)系不再受整式的限制,列出的方程含有分式,且分母含有未知數(shù),解出方程的解后還要進(jìn)行檢驗(yàn)。
2、列分式方程解應(yīng)用題的一般步驟如下:
(1)審題。理解題意,弄清已知條件和未知量;
(2)設(shè)未知數(shù)。合理的設(shè)未知數(shù)表示某一個未知量,有直接設(shè)法和間接設(shè)法兩種;
(3)找出題目中的等量關(guān)系,寫出等式;
(4)用含已知量和未知數(shù)的代數(shù)式來表示等式兩邊的語句,列出方程;
(5)解方程。求出未知數(shù)的值;
(6)檢驗(yàn)。不僅要檢驗(yàn)所求未知數(shù)的值是否為原方程的根,還要檢驗(yàn)未知數(shù)的值是否符合題目的實(shí)際意?!半p重驗(yàn)根”。
零指數(shù)冪與負(fù)整數(shù)指數(shù)冪
一、零指數(shù)冪
1、定義:任何不等于零的實(shí)數(shù)的零次冪都等于1,即a0=1(a≠0)。
2、特別注意:零的零次冪無意義。即00無意義。若問當(dāng)x=_____時,(x-2)0有意義。答案是:x≠2。
(2)按照定義分為:
二、負(fù)整數(shù)指數(shù)冪
1、定義:任何不等于的數(shù)的-n(n為正整數(shù))次冪,都等于這個數(shù)的n次冪的倒數(shù),
即a-n=(a≠0,n為正整數(shù))
2、注意事項(xiàng):
(1)負(fù)整數(shù)指數(shù)冪成立的條件是底數(shù)不為0;
(2)正整數(shù)指數(shù)冪的所有運(yùn)算法則均適用于負(fù)整式指數(shù)冪,即指數(shù)冪的運(yùn)算可以擴(kuò)大到整數(shù)指數(shù)冪范圍;
(3)要避免像5-2=-2×5=-10的錯誤,正確算法是:。
三、用科學(xué)計(jì)數(shù)法表示絕對值小于1的數(shù)
1、規(guī)則:絕對值小于1的數(shù),利用10的負(fù)整式指數(shù)冪,把它表示成a×10-n(n為正整數(shù)),其中1≤|a|<10。
2、注意事項(xiàng):
(1)n為該數(shù)左邊第一個非零數(shù)字前所有0的個數(shù)(包括小數(shù)點(diǎn)前的那個零)。如-0.00021=-2.1×10-4
(2)注意數(shù)的符號的變化,在數(shù)前面有負(fù)號的,其結(jié)果也要寫符號。
(3)寫科學(xué)記數(shù)法的關(guān)鍵的是確定10n的指數(shù)n的值。
復(fù)習(xí)數(shù)學(xué)的方法
數(shù)學(xué)學(xué)習(xí)的過程是思維開發(fā)的過程,只有打開自己的思維,考生才能學(xué)好數(shù)學(xué)。那要打開自己的思維,考生就需要多動腦,多思考。平時做題的時候,就不要看到難題就翻答案。相反,考生要仔細(xì)的研讀題目,思考題型的特點(diǎn),尋找解題的思路和方法。當(dāng)然,這也是有時間限制的,一般來說是仔細(xì)思考三分鐘。如果三分鐘之后還是沒有一點(diǎn)頭緒,考生就先放棄這道題,回頭有時間再看。
老師在課堂上講的知識點(diǎn),考生如果沒有通過習(xí)題來檢驗(yàn),是不知道自己掌握的如何的。那考生做好對應(yīng)的習(xí)題。也就是針對課堂內(nèi)容的習(xí)題,一般老師都會有布置。數(shù)量不需要太多,兩三道即可。如果有不會做的題,考生要及時提問,不要把問題放在那里不管。到時候問題越積越多,要解決起來就不容易了。
數(shù)學(xué)答題技巧
一是對自身數(shù)學(xué)學(xué)習(xí)狀況做一個完整的全面的認(rèn)識。根據(jù)自己的情況考試的時候重心定位準(zhǔn)確,防止“撿芝麻丟西瓜”。所以,在心中一定要給壓軸題或幾個“難點(diǎn)”一個時間上的限制,如果超過你設(shè)置的上限,必須要停止,回頭認(rèn)真檢查前面的題,盡量要保證選擇、填空萬無一失,前面的解答題盡可能的檢查一遍。
二是解數(shù)學(xué)壓軸題做一問是一問。第一問對絕大多數(shù)同學(xué)來說,不是問題;如果第一小問不會解,切忌不可輕易放棄第二小問。過程會多少寫多少,因?yàn)閿?shù)學(xué)解答題是按步驟給分的,寫上去的東西必須要規(guī)范,字跡要工整,布局要合理;過程會寫多少寫多少,但是不要說廢話,計(jì)算中盡量回避非必求成分;盡量多用幾何知識,少用代數(shù)計(jì)算,盡量用三角函數(shù),少在直角三角形中使用相似三角形的性質(zhì)。
三是解數(shù)學(xué)壓軸題一般可以分為三個步驟。認(rèn)真審題,理解題意、探究解題思路、正確解答。審題要全面審視題目的所有條件和答題要求,在整體上把握試題的特點(diǎn)、結(jié)構(gòu),以利于解題方法的選擇和解題步驟的設(shè)計(jì)。解數(shù)學(xué)壓軸題要善于總結(jié)解數(shù)學(xué)壓軸題中所隱含的重要數(shù)學(xué)思想,如轉(zhuǎn)化思想、數(shù)形結(jié)合思想、分類討論思想及方程的思想等。認(rèn)識條件和結(jié)論之間的關(guān)系、圖形的幾何特征與數(shù)、式的數(shù)量、結(jié)構(gòu)特征的關(guān)系,確定解題的思路和方法.當(dāng)思維受阻時,要及時調(diào)整思路和方法,并重新審視題意,注意挖掘隱蔽的條件和內(nèi)在聯(lián)系,既要防止鉆牛角尖,又要防止輕易放棄。
八年級下冊數(shù)學(xué)期末提綱相關(guān)文章:
★ 八年級下冊數(shù)學(xué)知識點(diǎn)期末復(fù)習(xí)提綱
★ 人教版八年級下冊數(shù)學(xué)復(fù)習(xí)提綱
★ 八年級下冊數(shù)學(xué)知識點(diǎn)整理
★ 八年級下冊數(shù)學(xué)復(fù)習(xí)提綱
★ 八年級下冊數(shù)學(xué)復(fù)習(xí)提綱人教版
★ 八年級數(shù)學(xué)下冊復(fù)習(xí)提綱
★ 八年級數(shù)學(xué)下冊數(shù)學(xué)分析的復(fù)習(xí)提綱