部編版初一數(shù)學(xué)知識點
對世界上的一切學(xué)問與知識的掌握也并非難事,只要持之以恒地學(xué)習,努力掌握規(guī)律,達到熟悉的境地,就能融會貫通,運用自如。學(xué)習需要持之以恒。下面是小編給大家整理的一些初一數(shù)學(xué)的知識點,希望對大家有所幫助。
初一下冊數(shù)學(xué)復(fù)習知識點
概念知識
1、單項式:數(shù)字與字母的積,叫做單項式。
2、多項式:幾個單項式的和,叫做多項式。
3、整式:單項式和多項式統(tǒng)稱整式。
4、單項式的次數(shù):單項式中所有字母的指數(shù)的和叫單項式的次數(shù)。
5、多項式的次數(shù):多項式中次數(shù)的項的次數(shù),就是這個多項式的次數(shù)。
6、余角:兩個角的和為90度,這兩個角叫做互為余角。
7、補角:兩個角的和為180度,這兩個角叫做互為補角。
8、對頂角:兩個角有一個公共頂點,其中一個角的兩邊是另一個角兩邊的反向延長線。這兩個角就是對頂角。
9、同位角:在“三線八角”中,位置相同的角,就是同位角。
10、內(nèi)錯角:在“三線八角”中,夾在兩直線內(nèi),位置錯開的角,就是內(nèi)錯角。
11、同旁內(nèi)角:在“三線八角”中,夾在兩直線內(nèi),在第三條直線同旁的角,就是同旁內(nèi)角。
12、有效數(shù)字:一個近似數(shù),從左邊第一個不為0的數(shù)開始,到精確的那位止,所有的數(shù)字都是有效數(shù)字。
13、概率:一個事件發(fā)生的可能性的大小,就是這個事件發(fā)生的概率。
14、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
15、三角形的角平分線:在三角形中,一個內(nèi)角的角平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。
16、三角形的中線:在三角形中連接一個頂點與它的對邊中點的線段,叫做這個三角形的中線。
17、三角形的高線:從一個三角形的一個頂點向它的對邊所在的直線作垂線,頂點和垂足之間的線段叫做三角形的高線(簡稱三角形的高)。
18、全等圖形:兩個能夠重合的圖形稱為全等圖形。
19、變量:變化的數(shù)量,就叫變量。
20、自變量:在變化的量中主動發(fā)生變化的,變叫自變量。
21、因變量:隨著自變量變化而被動發(fā)生變化的量,叫因變量。
22、軸對稱圖形:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形。
23、對稱軸:軸對稱圖形中對折的直線叫做對稱軸。
24、垂直平分線:線段是軸對稱圖形,它的一條對稱軸垂直于這條線段并且平分它,這樣的直線叫做這條線段的垂直平分線。(簡稱中垂線)
七年級下冊數(shù)學(xué)知識點
相似變換
※1、如果選用同一個長度單位量得兩條線段AB,CD的長度分別是m、n,那么就說這兩條線段的比AB:CD=m:n,或?qū)懗?
※2、四條線段a、b、c、d中,如果a與b的比等于c與d的比,即,那么這四條線段a、b、c、d叫做成比例線段,簡稱比例線段.
※3、注意點:
①a:b=k,說明a是b的k倍;
②由于線段a、b的長度都是正數(shù),所以k是正數(shù);
③比與所選線段的長度單位無關(guān),求出時兩條線段的長度單位要一致;
④除了a=b之外,a:b≠b:a,與互為倒數(shù);
平移變換
(1)圖形平移前后的形狀和大小沒有變化,只是位置發(fā)生變化;
(2)圖形平移后,對應(yīng)點連成的線段平行且相等(或在同一直線上)
(3)多次平移相當于一次平移。
(4)多次對稱后的圖形等于平移后的圖形。
(5)平移是由方向,距離決定的。
(6)經(jīng)過平移,對應(yīng)線段平行(或共線)且相等,對應(yīng)角相等,對應(yīng)點所連接的線段平行且相等。
這種將圖形上的所有點都按照某個方向作相同距離的位置移動,叫做圖形的平移運動,簡稱為平移
七年級數(shù)學(xué)上冊期末知識點
一次方程與方程組
-----------3.1一元一次方程及其解法
①方程是含有未知數(shù)的等式。
②方程都只含有一個未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的整式方程叫做一元一次方程。
③注意判斷一個方程是否是一元一次方程要抓住三點:
1)未知數(shù)所在的式子是整式(方程是整式方程);
2)化簡后方程中只含有一個未知數(shù);(系數(shù)中含字母時不能為零)
3)經(jīng)整理后方程中未知數(shù)的次數(shù)是1.
④解方程就是求出使方程中等號左右兩邊相等的未知數(shù)的值,這個值就是方程的解。方程的解代入滿足,方程成立。
⑤等式的性質(zhì):
1)等式兩邊同時加上或減去同一個數(shù)或同一個式子(整式或分式),等式不變(結(jié)果仍相等)。a=b得:a+(-)c=b+(-)c
2)等式兩邊同時乘以或除以同一個不為零的數(shù),等式不變。
a=b得:a×c=b×c或a÷c=b÷c(c≠0)
注意:運用性質(zhì)時,一定要注意等號兩邊都要同時+、-、×、÷;運用性質(zhì)2時,一定要注意0這個數(shù)。
⑥解一元一次方程一般步驟:
去分母(方程兩邊同乘各分母的最小公倍數(shù))→去括號→移項→合并同類項→系數(shù)化1;
以上是解一元一次方程五個基本步驟,在實際解方程的過程中,五個
步驟不一定完全用上,或有些步驟還需要重復(fù)使用.因此,解方程時,
要根據(jù)方程的特點,靈活選擇方法.在解方程時還要注意以下幾點:
⑴去分母:在方程兩邊都乘以各分母的最小公倍數(shù),不要漏乘不含
分母的項;分子是一個整體,去分母后應(yīng)加上括號;
注意:去分母(等式的基本性質(zhì))與分母化整(分數(shù)的基本性質(zhì))是兩個概念,不能混淆;
⑵去括號:遵從先去小括號,再去中括號,最后去大括號不要漏乘括號的項;不要弄錯符號(連著符號相乘);
⑶移項:把含有未知數(shù)的項移到方程的一邊,其他項都移到方程的另一邊(以=為界限),移項要變號;
⑷合并同類項:不要丟項,解方程是同解變形,每一步都是一個方程,
不能像計算或化簡題那樣寫能連等的形式.
⑸系數(shù)化1:(兩邊同除以未知數(shù)的系數(shù))把方程化成ax=b(a≠0)
的形式,字母及其指數(shù)不變系數(shù)化成1在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解不要分子、分母搞顛倒(一步一步來)
部編版初一數(shù)學(xué)知識點相關(guān)文章:
★ 備考資料