新版七年級數學下冊知識點
天才就是勤奮曾經有人這樣說過。如果這話不完全正確,那至少在很大程度上是正確的。學習,就算是天才,也是需要不斷練習與記憶的。下面是小編給大家整理的一些七年級數學的知識點,希望對大家有所幫助。
七年級數學知識點
平行線
1、在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。
2、平行公理:經過直線外一點,有且只有一條直線與這條直線平行。
3、如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
4、判定兩條直線平行的方法:
(1)兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行。簡單說成:同位角相等,兩直線平行。
(2)兩條直線被第三條直線所截,如果內錯角相等,那么這兩條直線平行。簡單說成:內錯角相等,兩直線平行。
(3)兩條直線被第三條直線所截,如果同旁內角互補,那么這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。
5、平行線的性質
(1)兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。
(2)兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。
(3)兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補
七年級數學考試知識點
變量之間的關系
一理論理解
1、若Y隨X的變化而變化,則X是自變量Y是因變量。
自變量是主動發(fā)生變化的量,因變量是隨著自變量的變化而發(fā)生變化的量,數值保持不變的量叫做常量。
3、若等腰三角形頂角是y,底角是x,那么y與x的關系式為y=180-2x.
2、能確定變量之間的關系式:相關公式①路程=速度×時間②長方形周長=2×(長+寬)③梯形面積=(上底+下底)×高÷2④本息和=本金+利率×本金×時間。⑤總價=單價×總量。⑥平均速度=總路程÷總時間
二、列表法:采用數表相結合的形式,運用表格可以表示兩個變量之間的關系。列表時要選取能代表自變量的一些數據,并按從小到大的順序列出,再分別求出因變量的對應值。列表法的特點是直觀,可以直接從表中找出自變量與因變量的對應值,但缺點是具有局限性,只能表示因變量的一部分。
三.關系式法:關系式是利用數學式子來表示變量之間關系的等式,利用關系式,可以根據任何一個自變量的值求出相應的因變量的值,也可以已知因變量的值求出相應的自變量的值。
四、圖像注意:a.認真理解圖象的含義,注意選擇一個能反映題意的圖象;b.從橫軸和縱軸的實際意義理解圖象上特殊點的含義(坐標),特別是圖像的起點、拐點、交點
八、事物變化趨勢的描述:對事物變化趨勢的描述一般有兩種:
1.隨著自變量x的逐漸增加(大),因變量y逐漸增加(大)(或者用函數語言描述也可:因變量y隨著自變量x的增加(大)而增加(大));
2.隨著自變量x的逐漸增加(大),因變量y逐漸減小(或者用函數語言描述也可:因變量y隨著自變量x的增加(大)而減小).
注意:如果在整個過程中事物的變化趨勢不一樣,可以采用分段描述.例如在什么范圍內隨著自變量x的逐漸增加(大),因變量y逐漸增加(大)等等.
九、估計(或者估算)對事物的估計(或者估算)有三種:
1.利用事物的變化規(guī)律進行估計(或者估算).例如:自變量x每增加一定量,因變量y的變化情況;平均每次(年)的變化情況(平均每次的變化量=(尾數-首數)/次數或相差年數)等等;
2.利用圖象:首先根據若干個對應組值,作出相應的圖象,再在圖象上找到對應的點對應的因變量y的值;
3.利用關系式:首先求出關系式,然后直接代入求值即可.
初一數學方法技巧
1.請概括的說一下學習的方法
曰:“像做其他事一樣,學習數學要研究方法。我為你們推薦的方法是:超前學習,展開聯(lián)想,多做總結,找出合情合理。
2.請談談超前學習的好處
曰:“首先,超前學習能挖掘出自身的潛力,培養(yǎng)自學能力。經過超前學習,會發(fā)現(xiàn)自己能獨立解決許多問題,對提高自信心,培養(yǎng)學習興趣很有幫助?!?/p>
其次,夠消除對新知識的“隱患”。超前學習能夠發(fā)現(xiàn)在現(xiàn)有的基礎上,自己對新知識認識的不妥之處。相反地,若直接聽別人說。似乎自己也能一開始就達到這種理解水平,實踐證明,并非這樣。
再次,超前學習中的有些內容,當時不能透徹理解,但經過深思之后,即使擱置一邊,大腦也會潛意識“加工”。當教師進度進行到這塊內容時,我們做第二次理解,會深刻的多。
最后,超前學習能提高聽課質量。超前學習以后,我們發(fā)現(xiàn)新知識中的多數自己完全可以理解。只有少數地方需借助于別人。這樣,在課堂上,我們即能將可以集中注意力的時間放“這少數地方”的理解上,即“好鋼用在刀刃上”。事實上,一節(jié)課,能集中注意力的時間并不太多。
3.請談談聯(lián)想與總結
曰:聯(lián)想與總結貫穿與學習過程中的始終。對每一知識的認識,必定要有認識基礎。尋找認識基礎的過程即是聯(lián)想,而認識基礎的是對以前知識的總結。以前總結的越簡潔、清晰、合理,越容易聯(lián)想。這樣就可以把新知識熔進原來的知識結構中為以后的某次聯(lián)想奠定基礎。聯(lián)想與總結在解題中特別有效。也許你以前并沒有這樣的認識,但解題能力卻很強,這說明你很聰明,你在不自覺中使用這種做法。如果你能很明確的認識這一點,你的能力會更強。
4.那么我們怎樣預習呢?
曰:“先說說學習的目標:(1)知道知識產生的背景,弄清知識形成的過程。
(2)或早或晚的知道知識的地位和作用:(3)總結出認識問題的規(guī)律(或說出認識問題使用了以前的什么規(guī)律)。
再說具體的做法:(1)對概念的理解。數學具有高度的抽象性。通常要借助具體的東西加以理解。有時借助字面的含義:有時借助其他學科知識。有時借助圖形……理解概念的境界是意會。一定要在理解概念上下一番苦功夫后再做題。
(2)對公式定理的預習,公式定理是使用最多的“規(guī)律”的總結。如:完全平方公式,勾股定理等。往往公式的推導定理的證明蘊含著豐富的數學方法及相當有用的解題規(guī)律。如三角形內角平分線定理的證明。我們應當先自己推導公式或證明定理,若做不成再參考別人的做法。無論是自己完成的,還是看別人的,都要說出這樣做是怎樣想出來的。
(3)對于例題及習題的處理見上面的(2)及下面的第五條。
新版七年級數學下冊知識點相關文章:
新版七年級數學下冊知識點
上一篇:七年級數學知識點總結2021
下一篇:七年級數學知識點北師版