国产成人v爽在线免播放观看,日韩欧美色,久久99国产精品久久99软件,亚洲综合色网站,国产欧美日韩中文久久,色99在线,亚洲伦理一区二区

學習啦 > 學習方法 > 初中學習方法 > 初一學習方法 > 七年級數(shù)學 >

關于蘇教版初一數(shù)學知識點

時間: 吉智0 分享

要想取得理想的成績,勤奮至關重要!只有勤奮學習,才能成就美好人生!勤奮出天才,這是一面永不褪色的旗幟,下面是小編為大家精心整理的關于蘇教版初一數(shù)學知識點,希望對大家有所幫助。

關于蘇教版初一數(shù)學知識點

數(shù)據(jù)的收集與整理

1、普查與抽樣調查

為了特定目的對全部考察對象進行的全面調查,叫做普查。其中被考察對象的全體叫做總體,組成總體的每一個被考察對象稱為個體。

從總體中抽取部分個體進行調查,這種調查稱為抽樣調查,其中從總體抽取的一部分個體叫做總體的一個樣本。

2、扇形統(tǒng)計圖

扇形統(tǒng)計圖:利用圓與扇形來表示總體與部分的關系,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計圖叫做扇形統(tǒng)計圖。(各個扇形所占的百分比之和為1)

圓心角度數(shù)=360°×該項所占的百分比。(各個部分的圓心角度數(shù)之和為360°)

3、頻數(shù)直方圖

頻數(shù)直方圖是一種特殊的條形統(tǒng)計圖,它將統(tǒng)計對象的數(shù)據(jù)進行了分組畫在橫軸上,縱軸表示各組數(shù)據(jù)的頻數(shù)。

4、各種統(tǒng)計圖的特點

條形統(tǒng)計圖:能清楚地表示出每個項目的具體數(shù)目。

折線統(tǒng)計圖:能清楚地反映事物的變化情況。

扇形統(tǒng)計圖:能清楚地表示出各部分在總體中所占的百分比。

多項式除以單項式

一、單項式

1、都是數(shù)字與字母的乘積的代數(shù)式叫做單項式。

2、單項式的數(shù)字因數(shù)叫做單項式的系數(shù)。

3、單項式中所有字母的指數(shù)和叫做單項式的次數(shù)。

4、單獨一個數(shù)或一個字母也是單項式。

5、只含有字母因式的單項式的系數(shù)是1或―1。

6、單獨的一個數(shù)字是單項式,它的系數(shù)是它本身。

7、單獨的一個非零常數(shù)的次數(shù)是0。

8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。

9、單項式的系數(shù)包括它前面的符號。

10、單項式的系數(shù)是帶分數(shù)時,應化成假分數(shù)。

11、單項式的系數(shù)是1或―1時,通常省略數(shù)字“1”。

12、單項式的次數(shù)僅與字母有關,與單項式的系數(shù)無關。

二、多項式

1、幾個單項式的和叫做多項式。

2、多項式中的每一個單項式叫做多項式的項。

3、多項式中不含字母的項叫做常數(shù)項。

4、一個多項式有幾項,就叫做幾項式。

5、多項式的每一項都包括項前面的符號。

6、多項式沒有系數(shù)的概念,但有次數(shù)的概念。

7、多項式中次數(shù)的項的次數(shù),叫做這個多項式的次數(shù)。

三、整式

1、單項式和多項式統(tǒng)稱為整式。

2、單項式或多項式都是整式。

3、整式不一定是單項式。

4、整式不一定是多項式。

5、分母中含有字母的代數(shù)式不是整式;而是今后將要學習的分式。

四、整式的加減

1、整式加減的理論根據(jù)是:去括號法則,合并同類項法則,以及乘法分配率。

2、幾個整式相加減,關鍵是正確地運用去括號法則,然后準確合并同類項。

3、幾個整式相加減的一般步驟:

(1)列出代數(shù)式:用括號把每個整式括起來,再用加減號連接。

(2)按去括號法則去括號。

(3)合并同類項。

4、代數(shù)式求值的一般步驟:

(1)代數(shù)式化簡。

(2)代入計算

(3)對于某些特殊的代數(shù)式,可采用“整體代入”進行計算。

五、同底數(shù)冪的乘法

1、n個相同因式(或因數(shù))a相乘,記作an,讀作a的n次方(冪),其中a為底數(shù),n為指數(shù),an的結果叫做冪。

2、底數(shù)相同的冪叫做同底數(shù)冪。

3、同底數(shù)冪乘法的運算法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加。即:am﹒an=am+n。

4、此法則也可以逆用,即:am+n=am﹒an。

5、開始底數(shù)不相同的冪的乘法,如果可以化成底數(shù)相同的冪的乘法,先化成同底數(shù)冪再運用法則。

六、冪的乘方

1、冪的乘方是指幾個相同的冪相乘。(am)n表示n個am相乘。

2、冪的乘方運算法則:冪的乘方,底數(shù)不變,指數(shù)相乘。(am)n=amn。

3、此法則也可以逆用,即:amn=(am)n=(an)m。

七、積的乘方

1、積的乘方是指底數(shù)是乘積形式的乘方。

2、積的乘方運算法則:積的乘方,等于把積中的每個因式分別乘方,然后把所得的冪相乘。即(ab)n=anbn。

3、此法則也可以逆用,即:anbn=(ab)n。

八、三種“冪的運算法則”異同點

1、共同點:

(1)法則中的底數(shù)不變,只對指數(shù)做運算。

(2)法則中的底數(shù)(不為零)和指數(shù)具有普遍性,即可以是數(shù),也可以是式(單項式或多項式)。

(3)對于含有3個或3個以上的運算,法則仍然成立。

2、不同點:

(1)同底數(shù)冪相乘是指數(shù)相加。

(2)冪的乘方是指數(shù)相乘。

(3)積的乘方是每個因式分別乘方,再將結果相乘。

九、同底數(shù)冪的除法

1、同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即:am÷an=am-n(a≠0)。

2、此法則也可以逆用,即:am-n=am÷an(a≠0)。

十、零指數(shù)冪

1、零指數(shù)冪的意義:任何不等于0的數(shù)的0次冪都等于1,即:a0=1(a≠0)。

十一、負指數(shù)冪

1、任何不等于零的數(shù)的―p次冪,等于這個數(shù)的p次冪的倒數(shù),即:

注:在同底數(shù)冪的除法、零指數(shù)冪、負指數(shù)冪中底數(shù)不為0。

十二、整式的乘法

(一)單項式與單項式相乘

1、單項式乘法法則:單項式與單項式相乘,把它們的系數(shù)、相同字母的冪分別相乘,其余字母連同它的指數(shù)不變,作為積的因式。

2、系數(shù)相乘時,注意符號。

3、相同字母的冪相乘時,底數(shù)不變,指數(shù)相加。

4、對于只在一個單項式中含有的字母,連同它的指數(shù)一起寫在積里,作為積的因式。

5、單項式乘以單項式的結果仍是單項式。

6、單項式的乘法法則對于三個或三個以上的單項式相乘同樣適用。

(二)單項式與多項式相乘

1、單項式與多項式乘法法則:單項式與多項式相乘,就是根據(jù)分配率用單項式去乘多項式中的每一項,再把所得的積相加。即:m(a+b+c)=ma+mb+mc。

2、運算時注意積的符號,多項式的每一項都包括它前面的符號。

3、積是一個多項式,其項數(shù)與多項式的項數(shù)相同。

4、混合運算中,注意運算順序,結果有同類項時要合并同類項,從而得到最簡結果。

(三)多項式與多項式相乘

1、多項式與多項式乘法法則:多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。即:(m+n)(a+b)=ma+mb+na+nb。

2、多項式與多項式相乘,必須做到不重不漏。相乘時,要按一定的順序進行,即一個多項式的每一項乘以另一個多項式的每一項。在未合并同類項之前,積的項數(shù)等于兩個多項式項數(shù)的積。

3、多項式的每一項都包含它前面的符號,確定積中每一項的符號時應用“同號得正,異號得負”。

4、運算結果中有同類項的要合并同類項。

5、對于含有同一個字母的一次項系數(shù)是1的兩個一次二項式相乘時,可以運用下面的公式簡化運算:(x+a)(x+b)=x2+(a+b)x+ab。

方程的有關概念

1.方程:含有未知數(shù)的等式就叫做方程.

2.一元一次方程:只含有一個未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程.例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程.

3.方程的解:使方程中等號左右兩邊相等的未知數(shù)的值,叫做方程的解.

注:⑴方程的解和解方程是不同的概念,方程的解實質上是求得的結果,它是一個數(shù)值(或幾個數(shù)值),而解方程的含義是指求出方程的解或判斷方程無解的過程.⑵方程的解的檢驗方法,首先把未知數(shù)的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結論.

關于蘇教版初一數(shù)學知識點相關文章:

蘇教版七年級數(shù)學上冊復習知識點

蘇教版七年級下冊數(shù)學復習提綱

蘇教版七年級數(shù)學下冊目錄

蘇教版七年級數(shù)學上冊教案

蘇教版七年級數(shù)學目錄

初一數(shù)學探索平行線的性質知識例題

蘇教版七年級數(shù)學試卷分析

蘇教版初一數(shù)學上冊期末測試卷

蘇教版七年級數(shù)學上冊期末試卷及答案

蘇教版七年級數(shù)學上冊期末考試卷

1504026