最新人教版初一下冊數(shù)學知識點
數(shù)學是一門基礎性的科學,值得每個人去學習,尤其是孩子,更要去學習數(shù)學,并且以此來構架自己的思維體系。下面小編為大家?guī)碜钚氯私贪娉跻幌聝詳?shù)學知識點,希望大家喜歡!
初一下冊數(shù)學知識點
1.1正數(shù)與負數(shù)
在以前學過的0以外的數(shù)前面加上負號“-”的數(shù)叫負數(shù)(negativenumber)。
與負數(shù)具有相反意義,即以前學過的0以外的數(shù)叫做正數(shù)(positivenumber)(根據(jù)需要,有時在正數(shù)前面也加上“+”)。
1.2有理數(shù)
正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù)(integer),正分數(shù)和負分數(shù)統(tǒng)稱分數(shù)(fraction)。
整數(shù)和分數(shù)統(tǒng)稱有理數(shù)(rationalnumber)。
通常用一條直線上的點表示數(shù),這條直線叫數(shù)軸(numberaxis)。
數(shù)軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數(shù)0,這個點叫做原點(origin)。
只有符號不同的兩個數(shù)叫做互為相反數(shù)(oppositenumber)。(例:2的相反數(shù)是-2;0的相反數(shù)是0)
數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值(absolutevalue),記作|a|。
一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);0的絕對值是0。兩個負數(shù),絕對值大的反而小。
1.3有理數(shù)的加減法
有理數(shù)加法法則:
1.同號兩數(shù)相加,取相同的符號,并把絕對值相加。
2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值?;橄喾磾?shù)的兩個數(shù)相加得0。
3.一個數(shù)同0相加,仍得這個數(shù)。
有理數(shù)減法法則:減去一個數(shù),等于加這個數(shù)的相反數(shù)。
1.4有理數(shù)的乘除法
有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘。任何數(shù)同0相乘,都得0。
乘積是1的兩個數(shù)互為倒數(shù)。
有理數(shù)除法法則:除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。
兩數(shù)相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數(shù),都得0。mì
求n個相同因數(shù)的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(shù)(basenumber),n叫做指數(shù)(exponent)。
負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù),0的任何次冪都是0。
把一個大于10的數(shù)表示成a×10的n次方的形式,使用的就是科學計數(shù)法。
從一個數(shù)的左邊第一個非0數(shù)字起,到末位數(shù)字止,所有數(shù)字都是這個數(shù)的有效數(shù)字(significantdigit)。
初一下冊數(shù)學知識點歸納
相交線與平行線
1、兩條直線相交所成的四個角中,相鄰的兩個角叫做鄰補角,特點是兩個角共用一條邊,另一條邊互為反向延長線,性質(zhì)是鄰補角互補;相對的兩個角叫做對頂角,特點是它們的兩條邊互為反向延長線。性質(zhì)是對頂角相等。
2、三線八角:對頂角(相等),鄰補角(互補),同位角,內(nèi)錯角,同旁內(nèi)角。
3、兩條直線被第三條直線所截:
同位角F(在兩條直線的同一旁,第三條直線的同一側)
內(nèi)錯角Z(在兩條直線內(nèi)部,位于第三條直線兩側)
同旁內(nèi)角U(在兩條直線內(nèi)部,位于第三條直線同側)
4、兩條直線相交所成的四個角中,如果有一個角為90度,則稱這兩條直線互相垂直。其中一條直線叫做另外一條直線的垂線,他們的交點稱為垂足。
5、垂直三要素:垂直關系,垂直記號,垂足。
6、垂直公理:過一點有且只有一條直線與已知直線垂直。
7、垂線段最短。
8、點到直線的距離:直線外一點到這條直線的垂線段的長度。
9、平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行。
推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。如果b//a,c//a,那么b//c
10、平行線的判定:
①同位角相等,兩直線平行。②內(nèi)錯角相等,兩直線平行。 ③同旁內(nèi)角互補,兩直線平行。
11、推論:在同一平面內(nèi),如果兩條直線都垂直于同一條直線,那么這兩條直線平行。
12、平行線的性質(zhì):
①兩直線平行,同位角相等;②兩直線平行,內(nèi)錯角相等;③兩直線平行,同旁內(nèi)角互補。
13、平面上不相重合的兩條直線之間的位置關系為_______或________
14、平移:①平移前后的兩個圖形形狀大小不變,位置改變。②對應點的線段平行且相等。
平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。
對應點:平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應點。
15、命題:判斷一件事情的語句叫命題。
命題分為題設和結論兩部分;題設是如果后面的,結論是那么后面的。
命題分為真命題和假命題兩種;定理是經(jīng)過推理證實的真命題。
概率
一、事件:
1、事件分為必然事件、不可能事件、不確定事件。
2、必然事件:事先就能肯定一定會發(fā)生的事件。也就是指該事件每次一定發(fā)生,不可能不發(fā)生,即發(fā)生的可能是100%(或1)。
3、不可能事件:事先就能肯定一定不會發(fā)生的事件。也就是指該事件每次都完全沒有機會發(fā)生,即發(fā)生的可能性為零。
4、不確定事件:事先無法肯定會不會發(fā)生的事件,也就是說該事件可能發(fā)生,也可能不發(fā)生,即發(fā)生的可能性在0和1之間。
二、等可能性:是指幾種事件發(fā)生的可能性相等。
1、概率:是反映事件發(fā)生的可能性的大小的量,它是一個比例數(shù),一般用P來表示,P(A)=事件A可能出現(xiàn)的結果數(shù)/所有可能出現(xiàn)的結果數(shù)。
2、必然事件發(fā)生的概率為1,記作P(必然事件)=1;
3、不可能事件發(fā)生的概率為0,記作P(不可能事件)=0;
4、不確定事件發(fā)生的概率在0—1之間,記作0
三、幾何概率
1、事件A發(fā)生的概率等于此事件A發(fā)生的可能結果所組成的面積(用SA表示)除以所有可能結果組成圖形的面積(用S全表示),所以幾何概率公式可表示為P(A)=SA/S全,這是因為事件發(fā)生在每個單位面積上的概率是相同的。
2、求幾何概率:
(1)首先分析事件所占的面積與總面積的關系;
(2)然后計算出各部分的面積;
(3)最后代入公式求出幾何概率。
三角形
1、三角形→由不在同一直線上的三條線段首尾順次相接所組成的圖形。
2、判斷三條線段能否組成三角形。
①a+b>c(ab為最短的兩條線段)
②a—b
3、第三邊取值范圍:a—b
4、對應周長取值范圍
若兩邊分別為a,b則周長的取值范圍是2a
如兩邊分別為5和7則周長的取值范圍是14
5、三角形中三角的關系
(1)、三角形內(nèi)角和定理:三角形的三個內(nèi)角的和等于1800。
n邊行內(nèi)角和公式(n—2)
(2)、三角形按內(nèi)角的大小可分為三類:
(1)銳角三角形,即三角形的三個內(nèi)角都是銳角的三角形;
(2)直角三角形,即有一個內(nèi)角是直角的三角形,我們通常用“RtΔ”表示“直角三角形”,其中直角∠C所對的邊AB稱為直角三角表的斜邊,夾直角的兩邊稱為直角三角形的直角邊。
注:直角三角形的性質(zhì):直角三角形的兩個銳角互余。
(3)鈍角三角形,即有一個內(nèi)角是鈍角的三角形。
(3)、判定一個三角形的形狀主要看三角形中角的度數(shù)。
(4)、直角三角形的面積等于兩直角邊乘積的一半。
6、三角形的'三條重要線段
(1)、三角形的角平分線:
1、三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
2、任意三角形都有三條角平分線,并且它們相交于三角形內(nèi)一點。(內(nèi)心)
(2)、三角形的中線:
1、在三角形中,連接一個頂點與它對邊中點的線段,叫做這個三角形的中線。
2、三角形有三條中線,它們相交于三角形內(nèi)一點。(重心)
3、三角形的中線把這個三角形分成面積相等的兩個三角形
(3)、三角形的高線:
1、從三角形的一個頂點向它的對邊所在的直線做垂線,頂點和垂足之間的線段叫做三角形的高線,簡稱為三角形的高。
2、任意三角形都有三條高線,它們所在的直線相交于一點。(垂心)
7、相關命題:
1)三角形中最多有1個直角或鈍角,最多有3個銳角,最少有2個銳角。
2)銳角三角形中的銳角的取值范圍是60≤X<90。銳角不小于60度。
3)任意一個三角形兩角平分線的夾角=90+第三角的一半。
4)鈍角三角形有兩條高在外部。
5)全等圖形的大小(面積、周長)、形狀都相同。
6)面積相等的兩個三角形不一定是全等圖形。
7)能夠完全重合的兩個圖形是全等圖形。
8)三角形具有穩(wěn)定性。
9)三條邊分別對應相等的兩個三角形全等。
10)三個角對應相等的兩個三角形不一定全等。
11)兩個等邊三角形不一定全等。
12)兩角及一邊對應相等的兩個三角形全等。
13)兩邊及一角對應相等的兩個三角形不一定全等。
14)兩邊及它們的夾角對應相等的兩個三角形全等。
15)兩條直角邊對應相等的兩個直角三角形全等。
16)一條斜邊和一直角邊對應相等的兩個三角形全等。
17)一個銳角和一邊(直角邊或斜邊)對應相等的兩個三角形全等。
18)一角和一邊對應相等的兩個直角三角形不一定全等。
19)有一個角是60的等腰三角形是等邊三角形。
8、全等圖形
1、兩個能夠重合的圖形稱為全等圖形。
2、全等圖形的性質(zhì):全等圖形的形狀和大小都相同。
9、全等三角形
1、能夠重合的兩個三角形是全等三角形,用符號“≌”連接,讀作“全等于”。
2、用“≌”連接的兩個全等三角形,表示對應頂點的字母寫在對應的位置上。
10、全等三角形的判定
1、三邊對應相等的兩個三角形全等,簡寫為“邊邊邊”或“SSS”。
2、兩角和它們的夾邊對應相等的兩個三角形全等,簡寫為“角邊角”或“ASA”。
3、兩角和其中一角的對邊對應相等的兩個三角形全等,簡寫為“角角邊”或“AAS”。
4、兩邊和它們的夾角對應相等的兩個三角形全等,簡寫為“邊角邊”或“SAS”。
11、做三角形(3種做法:已知兩邊及夾角、已知兩角及夾邊、已知三邊、已知兩角及一邊可以轉化為已知已知兩角及夾邊)。
12、利用三角形全等測距離;
13、、直角三角形全等的條件:在直角三角形中,斜邊和一條直角邊對應相等的兩個直角三角形全等,簡寫成“斜邊、直角邊”或“HL”。
變量之間的關系
一、理論理解
1、若Y隨X的變化而變化,則X是自變量Y是因變量。
自變量是主動發(fā)生變化的量,因變量是隨著自變量的變化而發(fā)生變化的量,數(shù)值保持不變的量叫做常量。
3、若等腰三角形頂角是y,底角是x,那么y與x的關系式為y=180—2x。
2、能確定變量之間的關系式:相關公式①路程=速度×時間②長方形周長=2×(長+寬)③梯形面積=(上底+下底)×高÷2④本息和=本金+利率×本金×時間。⑤總價=單價×總量。⑥平均速度=總路程÷總時間
二、列表法:采用數(shù)表相結合的形式,運用表格可以表示兩個變量之間的關系。列表時要選取能代表自變量的一些數(shù)據(jù),并按從小到大的順序列出,再分別求出因變量的對應值。列表法的特點是直觀,可以直接從表中找出自變量與因變量的對應值,但缺點是具有局限性,只能表示因變量的一部分。
三、關系式法:關系式是利用數(shù)學式子來表示變量之間關系的等式,利用關系式,可以根據(jù)任何一個自變量的值求出相應的因變量的值,也可以已知因變量的值求出相應的自變量的值。
四、圖像注意:
a、認真理解圖象的含義,注意選擇一個能反映題意的圖象;
b、從橫軸和縱軸的實際意義理解圖象上特殊點的含義(坐標),特別是圖像的起點、拐點、交點
八、事物變化趨勢的描述:對事物變化趨勢的描述一般有兩種:
1、隨著自變量x的逐漸增加(大),因變量y逐漸增加(大)(或者用函數(shù)語言描述也可:因變量y隨著自變量x的增加(大)而增加(大));
2、隨著自變量x的逐漸增加(大),因變量y逐漸減小(或者用函數(shù)語言描述也可:因變量y隨著自變量x的增加(大)而減小)。
注意:如果在整個過程中事物的變化趨勢不一樣,可以采用分段描述。例如在什么范圍內(nèi)隨著自變量x的逐漸增加(大),因變量y逐漸增加(大)等等。
九、估計(或者估算)對事物的估計(或者估算)有三種:
1、利用事物的變化規(guī)律進行估計(或者估算)。例如:自變量x每增加一定量,因變量y的變化情況;平均每次(年)的變化情況(平均每次的變化量=(尾數(shù)—首數(shù))/次數(shù)或相差年數(shù))等等;
2、利用圖象:首先根據(jù)若干個對應組值,作出相應的圖象,再在圖象上找到對應的點對應的因變量y的值;
3、利用關系式:首先求出關系式,然后直接代入求值即可。
初一下冊數(shù)學必背知識點
1.三角形的定義
由不在同一直線上的三條線段首尾順次相接組成的圖形叫做三角形.
三角形有三條邊,三個內(nèi)角,三個頂點.組成三角形的線段叫做三角形的邊;相鄰兩邊所組成的角叫做三角形的內(nèi)角;相鄰兩邊的公共端點是三角形的頂點。
2.三角形的表示
三角形ABC用符號表示為△ABC,三角形ABC的邊AB可用邊AB所對的角C的小寫字母c表示,AC可用b表示,BC可用a表示.三個頂點用大寫字母A,B,C來表示。
注意:
(1)三條線段要不在同一直線上,且首尾順次相接;
(2)三角形是一個封閉的圖形;
(3)△ABC是三角形ABC的符號標記,單獨的△沒有意義。
3.三角形的主要線段的定義
(1)三角形的中線(在中文中,中有中間的意思而在這里就是邊上的中線)
三角形中,連結一個頂點和它對邊中點的線段。
表示法:①AD是△ABC的BC上的中線.
②BD=DC=1/2 BC
注意:①三角形的中線是線段;
②三角形三條中線全在三角形的內(nèi)部且交于三角形內(nèi)部一點(注:這點叫重心:當我們用一條線穿過重心的時候,三角形不會亂晃)
③中線把三角形分成兩個面積相等的三角形。
(2)三角形的角平分線
三角形一個內(nèi)角的平分線與它的對邊相交,這個角頂點與交點之間的線段
表示法:①AD是△ABC的∠BAC的平分線.
②∠1=∠2=∠BAC.
注意:①三角形的角平分線是線段;
②三角形三條角平分線全在三角形的內(nèi)部且交于三角形內(nèi)部一點;(注:這一點角三角形的內(nèi)心。角平分線的性質(zhì):角平分線上的點到角的兩邊距離相等)
③用量角器畫三角形的角平分線。
(3)三角形的高
從三角形的一個頂點向它的對邊所在的直線作垂線,頂點和垂足之間的線段.
表示法:①AD是△ABC的BC上的高線
②AD⊥BC于D
③∠ADB=∠ADC=90°.
注意:①三角形的高是線段;
②銳角三角形三條高全在三角形的內(nèi)部,直角三角形有兩條高是邊,鈍角三角形有兩條高在形外;(三角形三條高所在直線交于一點.這點叫垂心)
③由于三角形有三條高線,所以求三角形的面積的時候就有三種(因為高底不一樣)
4.三角形的角與角之間的關系
(1)三角形三個內(nèi)角的和等于180°;
(2)三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;
(3)三角形的一個外角大于任何一個和它不相鄰的內(nèi)角.
(4)直角三角形的兩個銳角互余.