初一數(shù)學(xué)知識點(diǎn)總結(jié)歸納
學(xué)習(xí)就好像是一架保持平衡的天平,一邊是付出,一邊是收獲,少付出少收獲,多付出多收獲,不勞必定無獲!下面小編為大家?guī)沓跻粩?shù)學(xué)知識點(diǎn)總結(jié)歸納,歡迎大家參考閱讀,希望能夠幫助到大家!
初一數(shù)學(xué)知識點(diǎn)總結(jié)歸納
第一章有理數(shù)
1、大于0的數(shù)是正數(shù)。
2、有理數(shù)分類:正有理數(shù)、0、負(fù)有理數(shù)。
3、有理數(shù)分類:整數(shù)(正整數(shù)、0、負(fù)整數(shù))、分?jǐn)?shù)(正分?jǐn)?shù)、負(fù)分?jǐn)?shù))
4、規(guī)定了原點(diǎn),單位長度,正方向的直線稱為數(shù)軸。
5、數(shù)的大小比較:
①正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù)。
②兩個(gè)負(fù)數(shù)比較,絕對值大的反而小。
6、只有符號不同的兩個(gè)數(shù)稱互為相反數(shù)。
7、若a+b=0,則a,b互為相反數(shù)
8、表示數(shù)a的點(diǎn)到原點(diǎn)的距離稱為數(shù)a的絕對值
9、絕對值的三句:正數(shù)的絕對值是它本身,
負(fù)數(shù)的絕對值是它的相反數(shù),
0的絕對值是0。
10、有理數(shù)的計(jì)算:先算符號、再算數(shù)值。
11、加減: ①正+正 ②大-小 ③小-大=-(大-小) ④-☆-О=-(☆+О)
12、乘除:同號得正,異號的負(fù)
13、乘方:表示n個(gè)相同因數(shù)的乘積。
14、負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù)。
15、混合運(yùn)算:先乘方,再乘除,后加減,同級運(yùn)算從左到右,有括號的先算括號。
16、科學(xué)計(jì)數(shù)法:用ax10n 表示一個(gè)數(shù)。(其中a是整數(shù)數(shù)位只有一位的數(shù))
17、左邊第一個(gè)非零的數(shù)字起,所有的數(shù)字都是有效數(shù)字。
【知識梳理】
1.數(shù)軸:數(shù)軸三要素:原點(diǎn),正方向和單位長度;數(shù)軸上的點(diǎn)與實(shí)數(shù)是一一對應(yīng)的。
2.相反數(shù)實(shí)數(shù)a的相反數(shù)是-a;若a與b互為相反數(shù),則有a+b=0,反之亦然;幾何意義:在數(shù)軸上,表示相反數(shù)的兩個(gè)點(diǎn)位于原點(diǎn)的兩側(cè),并且到原點(diǎn)的距離相等。
3.倒數(shù):若兩個(gè)數(shù)的積等于1,則這兩個(gè)數(shù)互為倒數(shù)。
4.絕對值:代數(shù)意義:正數(shù)的絕對值是它本身,負(fù)數(shù)的絕對值是它的相反數(shù),0的絕對值是0;
幾何意義:一個(gè)數(shù)的絕對值,就是在數(shù)軸上表示這個(gè)數(shù)的點(diǎn)到原點(diǎn)的距離.
5.科學(xué)記數(shù)法:,其中。
6.實(shí)數(shù)大小的比較:利用法則比較大小;利用數(shù)軸比較大小。
7.在實(shí)數(shù)范圍內(nèi),加、減、乘、除、乘方運(yùn)算都可以進(jìn)行,但開方運(yùn)算不一定能行,如負(fù)數(shù)不能開偶次方。實(shí)數(shù)的運(yùn)算基礎(chǔ)是有理數(shù)運(yùn)算,有理數(shù)的一切運(yùn)算性質(zhì)和運(yùn)算律都適用于實(shí)數(shù)運(yùn)算。正確的確定運(yùn)算結(jié)果的符號和靈活的使用運(yùn)算律是掌握好實(shí)數(shù)運(yùn)算的關(guān)鍵。
初一數(shù)學(xué)下冊知識點(diǎn)總結(jié)
1、有序數(shù)對:有順序的兩個(gè)數(shù)a與b組成的數(shù)對叫做有序數(shù)對,記做(a,b)。
2、平面直角坐標(biāo)系:在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成平面直角坐標(biāo)系。
3、橫軸、縱軸、原點(diǎn):水平的數(shù)軸稱為x軸或橫軸;豎直的數(shù)軸稱為y軸或縱軸;兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
4、坐標(biāo):對于平面內(nèi)任一點(diǎn)P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應(yīng)的數(shù)a,b分別叫點(diǎn)P的橫坐標(biāo)和縱坐標(biāo),記作P(a,b)。
5、象限:兩條坐標(biāo)軸把平面分成四個(gè)部分,右上部分叫第一象限,按逆時(shí)針方向依次叫第二象限、第三象限、第四象限。坐標(biāo)軸上的點(diǎn)不在任何一個(gè)象限內(nèi)。
6、各象限點(diǎn)的坐標(biāo)特點(diǎn)①第一象限的點(diǎn):橫坐標(biāo)0,縱坐標(biāo)0;②第二象限的點(diǎn):橫坐標(biāo)0,縱坐標(biāo)0;③第三象限的點(diǎn):橫坐標(biāo)0,縱坐標(biāo)0;④第四象限的點(diǎn):橫坐標(biāo)0,縱坐標(biāo)0。
7、由二元一次方程組中的一個(gè)方程,將一個(gè)未知數(shù)用含有另一未知數(shù)的式子表示出來,再代入另一方程,實(shí)現(xiàn)消元,進(jìn)而求得這個(gè)二元一次方程組的解。這種方法叫做代入消元法,簡稱代入法。
8、兩個(gè)二元一次方程中同一未知數(shù)的系數(shù)相反或相等時(shí),將兩個(gè)方程的兩邊分別相加或相減,就能消去這個(gè)未知數(shù),得到一個(gè)一元一次方程。這種方法叫做加減消元法,簡稱加減法。
9、多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加,其特點(diǎn)是把多項(xiàng)式除以單項(xiàng)式轉(zhuǎn)化成單項(xiàng)式除以單項(xiàng)式,所得商的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)相同,另外還要特別注意符號。
10、二元一次方程組:把兩個(gè)二元一次方程合在一起,就組成了一個(gè)二元一次方程組。
11、二元一次方程的解:一般地,使二元一次方程兩邊的值相等的未知數(shù)的值叫做二元一次方程組的解。
初一數(shù)學(xué)期中知識點(diǎn)總結(jié)
一、整式的加減
1、整式加減的理論根據(jù)是:去括號法則,合并同類項(xiàng)法則,以及乘法分配率。
2、幾個(gè)整式相加減,關(guān)鍵是正確地運(yùn)用去括號法則,然后準(zhǔn)確合并同類項(xiàng)。
3、幾個(gè)整式相加減的一般步驟:
(1)列出代數(shù)式:用括號把每個(gè)整式括起來,再用加減號連接。
(2)按去括號法則去括號。
(3)合并同類項(xiàng)。
4、代數(shù)式求值的一般步驟:
(1)代數(shù)式化簡。
(2)代入計(jì)算
(3)對于某些特殊的代數(shù)式,可采用“整體代入”進(jìn)行計(jì)算。
二、同底數(shù)冪的乘法
1、n個(gè)相同因式(或因數(shù))a相乘,記作an,讀作a的n次方(冪),其中a為底數(shù),n為指數(shù),an的結(jié)果叫做冪。
2、底數(shù)相同的'冪叫做同底數(shù)冪。
3、同底數(shù)冪乘法的運(yùn)算法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加。即:am﹒an=am+n。
4、此法則也可以逆用,即:am+n=am﹒an。
5、開始底數(shù)不相同的冪的乘法,如果可以化成底數(shù)相同的冪的乘法,先化成同底數(shù)冪再運(yùn)用法則。
三、冪的乘方
1、冪的乘方是指幾個(gè)相同的冪相乘。(am)n表示n個(gè)am相乘。
2、冪的乘方運(yùn)算法則:冪的乘方,底數(shù)不變,指數(shù)相乘。(am)n=amn。
3、此法則也可以逆用,即:amn=(am)n=(an)m。
四、積的乘方
1、積的乘方是指底數(shù)是乘積形式的乘方。
2、積的乘方運(yùn)算法則:積的乘方,等于把積中的每個(gè)因式分別乘方,然后把所得的冪相乘。即(ab)n=anbn。
3、此法則也可以逆用,即:anbn=(ab)n。