七年級(jí)數(shù)學(xué)必考的知識(shí)點(diǎn)
大家在學(xué)習(xí)中,是不是聽到知識(shí)點(diǎn),知識(shí)點(diǎn)是知識(shí)中的最小單位,最具體的內(nèi)容,有時(shí)候也叫“考點(diǎn)”。下面小編為大家?guī)?a href='http://www.zbfsgm.com/xuexiff/chuyishuxue/' target='_blank'>七年級(jí)數(shù)學(xué)必考的知識(shí)點(diǎn),希望對(duì)您有所幫助!
七年級(jí)數(shù)學(xué)必考的知識(shí)點(diǎn)
第一章 有理數(shù)
(一)正負(fù)數(shù)
1.正數(shù):大于0的數(shù)。
2.負(fù)數(shù):小于0的數(shù)。
3.正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。
注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);
(二)有理數(shù)
1.有理數(shù):由整數(shù)和分?jǐn)?shù)組成的數(shù)。包括:正整數(shù)、0、負(fù)整數(shù),正分?jǐn)?shù)、負(fù)分?jǐn)?shù)??梢詫懗蓛蓚€(gè)整之比的形式。(無理數(shù)是不能寫成兩個(gè)整數(shù)之比的形式,它寫成小數(shù)形式,小數(shù)點(diǎn)后的數(shù)字是無限不循環(huán)的。如:π)
有理數(shù)的分類: ① ②
(三)數(shù)軸
1.數(shù)軸:用直線上的點(diǎn)表示數(shù),這條直線叫做數(shù)軸。(畫一條直線,在直線上任取一點(diǎn)表示數(shù)0,這個(gè)零點(diǎn)叫做原點(diǎn),規(guī)定直線上從原點(diǎn)向右或向上為正方向;選取適當(dāng)?shù)拈L(zhǎng)度為單位長(zhǎng)度,以便在數(shù)軸上取點(diǎn)。)
2.數(shù)軸的三要素:原點(diǎn)、正方向、單位長(zhǎng)度。
3.相反數(shù):只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù)。0的相反數(shù)還是0。
相反數(shù)的和為0 a+b=0 a、b互為相反數(shù).
4.絕對(duì)值:正數(shù)的絕對(duì)值是它本身,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);0的絕對(duì)值是0,兩個(gè)負(fù)數(shù),絕對(duì)值大的反而小。
絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離;
(2) 絕對(duì)值可表示為: 或 ;
(3) 等于本身的數(shù)匯總:
相反數(shù)等于本身的數(shù):0
倒數(shù)等于本身的數(shù):1,-1
絕對(duì)值等于本身的數(shù):正數(shù)和0
平方等于本身的數(shù):0,1
立方等于本身的數(shù):0,1,-1.
(四)有理數(shù)的加減法
1.先定符號(hào),再算絕對(duì)值。
2.加法運(yùn)算法則:同號(hào)相加,到相同符號(hào),并把絕對(duì)值相加。異號(hào)相加,取絕對(duì)值大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值?;橄喾磾?shù)的兩個(gè)數(shù)相加得0。一個(gè)數(shù)同0相加減,仍得這個(gè)數(shù)。
3.加法交換律:a+b= b+ a 兩個(gè)數(shù)相加,交換加數(shù)的位置,和不變。
4.加法結(jié)合律:(a+b)+ c = a +(b+ c )三個(gè)數(shù)相加,先把前兩個(gè)數(shù)相加,或者先把后兩個(gè)數(shù)相加,和不變。
5. a?b = a +(?b) 減去一個(gè)數(shù),等于加這個(gè)數(shù)的相反數(shù)。
(五)有理數(shù)乘法(先定積的符號(hào),再定積的大小)
1.同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘。任何數(shù)同0相乘,都得0。
2.乘積是1的兩個(gè)數(shù)互為倒數(shù)。
3.乘法交換律:ab= b a
4.乘法結(jié)合律:(ab)c = a (b c)
5.乘法分配律:a(b +c)= a b+ ac
(六)有理數(shù)除法
1.先將除法化成乘法,然后定符號(hào),最后求結(jié)果。
2.除以一個(gè)不等于0的數(shù),等于乘這個(gè)數(shù)的倒數(shù)。
3.兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除,0除以任何一個(gè)不等于0的數(shù),都得0。
(七)乘方
1.求n個(gè)相同因數(shù)的積的運(yùn)算,叫做乘方。寫作an 。(乘方的結(jié)果叫冪,a叫底數(shù),n叫指數(shù))
2.負(fù)數(shù)的奇數(shù)次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù);0的任何正整數(shù)次冪都是0。
3.同底數(shù)冪相乘,底不變,指數(shù)相加。
4.同底數(shù)冪相除,底不變,指數(shù)相減。
5據(jù)規(guī)律 底數(shù)的小數(shù)點(diǎn)移動(dòng)一位,平方數(shù)的小數(shù)點(diǎn)移動(dòng)二位.
(八)有理數(shù)的加減乘除混合運(yùn)算法則
1.先乘方,再乘除,最后加減。
2.同級(jí)運(yùn)算,從左到右進(jìn)行。
3.如有括號(hào),先做括號(hào)內(nèi)的運(yùn)算,按小括號(hào)、中括號(hào)、大括號(hào)依次進(jìn)行。
(九)科學(xué)記數(shù)法、近似數(shù)、有效數(shù)字。
第二章 整式
(一)整式
1.整式:?jiǎn)雾?xiàng)式和多項(xiàng)式的統(tǒng)稱叫整式。
2.單項(xiàng)式:數(shù)與字母的乘積組成的式子叫單項(xiàng)式。單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是單項(xiàng)式。
3.系數(shù);一個(gè)單項(xiàng)式中,數(shù)字因數(shù)叫做這個(gè)單項(xiàng)式的系數(shù)。
4。次數(shù):一個(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。
5.多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。
6.項(xiàng):組成多項(xiàng)式的每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng)。
7.常數(shù)項(xiàng):不含字母的項(xiàng)叫做常數(shù)項(xiàng)。
8.多項(xiàng)式的次數(shù):多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。
9.同類項(xiàng):多項(xiàng)式中,所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng)叫做同類項(xiàng)。
10.合并同類項(xiàng):把多項(xiàng)式中的同類項(xiàng)合并成一項(xiàng),叫做合并同類項(xiàng)。
(二)整式加減
整式加減運(yùn)算時(shí),如果遇到括號(hào)先去括號(hào),再合并同類項(xiàng)。
1.去括號(hào):一般地,幾個(gè)整式相加減,如果有括號(hào)就先去括號(hào),然后再合并同類項(xiàng)。
如果括號(hào)外的因數(shù)是正數(shù),去括號(hào)后原括號(hào)內(nèi)各項(xiàng)的符號(hào)與原來的符號(hào)相同。如果括號(hào)外的因數(shù)是負(fù)數(shù),去括號(hào)后原括號(hào)內(nèi)各項(xiàng)的符號(hào)與原來的符號(hào)相反。
2.合并同類項(xiàng):把多項(xiàng)式中的同類項(xiàng)合并成一項(xiàng),叫做合并同類項(xiàng)。
合并同類項(xiàng)后,所得項(xiàng)的系數(shù)是合并前各同類項(xiàng)的系數(shù)的和,且字母部分不變
第三章 一元一次方程
分析實(shí)際問題中的數(shù)量關(guān)系,利用其中的相等關(guān)系列出方程,是用數(shù)學(xué)解決實(shí)際問題的一種方法。
一、方程:
先設(shè)字母表示未知數(shù),然后根據(jù)相等關(guān)系,寫出含有未知數(shù)的等式叫方程。
(一)一元一次方程。
1.一元一次方程:方程里只含有一個(gè)未知數(shù)(元),未知數(shù)的次數(shù)都是1,這樣的方程叫做一元一次方程。
2.解:求出的方程中未知數(shù)的值叫做方程的解。
(二)等式的性質(zhì)
1.等式兩邊加(或減)同一個(gè)數(shù)(或式子),結(jié)果仍相等。
如果a= b,那么a± c= b± c
2.等式兩邊乘同一個(gè)數(shù),或除以同一個(gè)不為0的數(shù),結(jié)果仍相等。
如果a= b,那么a c= b c;
如果a= b,(c?0),那么a ∕c = b ∕ c。
(三)解方程的步驟
解一元一次方程的步驟:去分母、去括號(hào)、移項(xiàng)、合并同類項(xiàng),未知數(shù)系數(shù)化為1。
1.去分母:把系數(shù)化成整數(shù)。
2.去括號(hào)
3.移項(xiàng):把等式一邊的某項(xiàng)變號(hào)后移到另一邊。
4.合并同類項(xiàng)
5.系數(shù)化為1
列方程解應(yīng)用題的常用公式:
(1)行程問題: 路程=速度·時(shí)間 ;
(2)工程問題:工作量=工作效率·工作時(shí)間 ;
工程問題常用等量關(guān)系: 先做的+后做的=完成量
(3)順?biāo)嫠畣栴}:
順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;
順?biāo)嫠畣栴}常用等量關(guān)系: 順?biāo)烦?逆水路程
(4)商品利潤(rùn)問題: 售價(jià)=定價(jià) , ;
利潤(rùn)問題常用等量關(guān)系: 售價(jià)-進(jìn)價(jià)=利潤(rùn)
(5)配套問題:
(6)分配問題
第四章 圖形認(rèn)識(shí)初步
一、圖形認(rèn)識(shí)初步
1.幾何圖形:把從實(shí)物中抽象出來的各種圖形的統(tǒng)稱。
2.平面圖形:有些幾何圖形的各部分都在同一平面內(nèi),這樣的圖形是平面圖形。
3.立體圖形:有些幾何圖形的各部分不都在同一平面內(nèi),這樣的圖形是立體圖形。
4.展開圖:有些立體圖形是由一些平面圖形圍成的,將它們的表面適當(dāng)剪開,可以展開成平面圖形,這樣的平面圖形稱為相應(yīng)立體圖形的展開圖。
5.點(diǎn),線,面,體
①圖形是由點(diǎn),線,面構(gòu)成的。
②線與線相交得點(diǎn),面與面相交得線。
③點(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。
二、直線、線段、射線
1.線段:線段有兩個(gè)端點(diǎn)。
2.射線:將線段向一個(gè)方向無限延長(zhǎng)就形成了射線。射線只有一個(gè)端點(diǎn)。
3.直線:將線段的兩端無限延長(zhǎng)就形成了直線。直線沒有端點(diǎn)。
4.兩點(diǎn)確定一條直線:經(jīng)過兩點(diǎn)有一條直線,并且只有一條直線。
5.相交:兩條直線有一個(gè)公共點(diǎn)時(shí),稱這兩條直線相交。
6.兩條直線相交有一個(gè)公共點(diǎn),這個(gè)公共點(diǎn)叫交點(diǎn)。
7.中點(diǎn):M點(diǎn)把線段AB分成相等的兩條線段AM與MB,點(diǎn)M叫做線段AB的中點(diǎn)。
8.線段的性質(zhì):兩點(diǎn)的所有連線中,線段最短。(兩點(diǎn)之間,線段最短)
9.距離:連接兩點(diǎn)間的線段的長(zhǎng)度,叫做這兩點(diǎn)的距離。
三、角
1.角:有公共端點(diǎn)的兩條射線組成的圖形叫做角。
2.角的度量單位:度、分、秒。
3.角的度量與表示:
①角由兩條具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。
②一度的1/60是一分,一分的1/60是一秒。角的度、分、秒是60進(jìn)制。
4.角的比較:
①角也可以看成是由一條射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。
②平角和周角:一條射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角。平角等于180度。周角等于360度。直角等于90度。
③平分線:從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。
④工具:量角器、三角尺、經(jīng)緯儀。
5.余角和補(bǔ)角
①余角:兩個(gè)角的和等于90度,這兩個(gè)角互為余角。即其中每一個(gè)是另一個(gè)角的余角。
②補(bǔ)角:兩個(gè)角的和等于180度,這兩個(gè)角互為補(bǔ)角。即其中一個(gè)是另一個(gè)角的補(bǔ)角。
③補(bǔ)角的性質(zhì):等角的補(bǔ)角相等
④余角的性質(zhì):等角的余角相等
初中七年級(jí)數(shù)學(xué)知識(shí)點(diǎn)
正數(shù)和負(fù)數(shù)
⒈、正數(shù)和負(fù)數(shù)的概念
負(fù)數(shù):比0小的`數(shù)正數(shù):比0大的數(shù)0既不是正數(shù),也不是負(fù)數(shù)
注意:①字母a可以表示任意數(shù),當(dāng)a表示正數(shù)時(shí),—a是負(fù)數(shù);當(dāng)a表示負(fù)數(shù)時(shí),—a是正數(shù);當(dāng)a表示0時(shí),—a仍是0。(如果出判斷題為:帶正號(hào)的數(shù)是正數(shù),帶負(fù)號(hào)的數(shù)是負(fù)數(shù),這種說法是錯(cuò)誤的,例如+a,—a就不能做出簡(jiǎn)單判斷)
②正數(shù)有時(shí)也可以在前面加“+”,有時(shí)“+”省略不寫。所以省略“+”的正數(shù)的符號(hào)是正號(hào)。
2、具有相反意義的量
若正數(shù)表示某種意義的量,則負(fù)數(shù)可以表示具有與該正數(shù)相反意義的量,比如:
零上8℃表示為:+8℃;零下8℃表示為:—8℃
3、0表示的意義
(1)0表示“沒有”,如教室里有0個(gè)人,就是說教室里沒有人;
(2)0是正數(shù)和負(fù)數(shù)的分界線,0既不是正數(shù),也不是負(fù)數(shù)。如:
(3)0表示一個(gè)確切的量。如:0℃以及有些題目中的基準(zhǔn),比如以海平面為基準(zhǔn),則0米就表示海平面。
有理數(shù)
1、有理數(shù)的概念
(1)正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱為整數(shù)(0和正整數(shù)統(tǒng)稱為自然數(shù))
(2)正分?jǐn)?shù)和負(fù)分?jǐn)?shù)統(tǒng)稱為分?jǐn)?shù)
(3)正整數(shù),0,負(fù)整數(shù),正分?jǐn)?shù),負(fù)分?jǐn)?shù)都可以寫成分?jǐn)?shù)的形式,這樣的數(shù)稱為有理數(shù)。
理解:只有能化成分?jǐn)?shù)的數(shù)才是有理數(shù)。
①π是無限不循環(huán)小數(shù),不能寫成分?jǐn)?shù)形式,不是有理數(shù)。
②有限小數(shù)和無限循環(huán)小數(shù)都可化成分?jǐn)?shù),都是有理數(shù)。
③整數(shù)也能化成分?jǐn)?shù),也是有理數(shù)
注意:引入負(fù)數(shù)以后,奇數(shù)和偶數(shù)的范圍也擴(kuò)大了,像—2,—4,—6,—8也是偶數(shù),—1,—3,—5也是奇數(shù)。
初中數(shù)學(xué)方法技巧
1.請(qǐng)概括的說一下學(xué)習(xí)的方法
曰:“像做其他事一樣,學(xué)習(xí)數(shù)學(xué)要研究方法。我為你們推薦的方法是:超前學(xué)習(xí),展開聯(lián)想,多做總結(jié),找出合情合理。
2.請(qǐng)談?wù)劤皩W(xué)習(xí)的好處
曰:“首先,超前學(xué)習(xí)能挖掘出自身的潛力,培養(yǎng)自學(xué)能力。經(jīng)過超前學(xué)習(xí),會(huì)發(fā)現(xiàn)自己能獨(dú)立解決許多問題,對(duì)提高自信心,培養(yǎng)學(xué)習(xí)興趣很有幫助?!?/p>
其次,夠消除對(duì)新知識(shí)的“隱患”。超前學(xué)習(xí)能夠發(fā)現(xiàn)在現(xiàn)有的基礎(chǔ)上,自己對(duì)新知識(shí)認(rèn)識(shí)的不妥之處。相反地,若直接聽別人說。似乎自己也能一開始就達(dá)到這種理解水平,實(shí)踐證明,并非這樣。
再次,超前學(xué)習(xí)中的有些內(nèi)容,當(dāng)時(shí)不能透徹理解,但經(jīng)過深思之后,即使擱置一邊,大腦也會(huì)潛意識(shí)“加工”。當(dāng)教師進(jìn)度進(jìn)行到這塊內(nèi)容時(shí),我們做第二次理解,會(huì)深刻的多。
最后,超前學(xué)習(xí)能提高聽課質(zhì)量。超前學(xué)習(xí)以后,我們發(fā)現(xiàn)新知識(shí)中的多數(shù)自己完全可以理解。只有少數(shù)地方需借助于別人。這樣,在課堂上,我們即能將可以集中注意力的時(shí)間放“這少數(shù)地方”的理解上,即“好鋼用在刀刃上”。事實(shí)上,一節(jié)課,能集中注意力的時(shí)間并不太多。
3.請(qǐng)談?wù)劼?lián)想與總結(jié)
曰:聯(lián)想與總結(jié)貫穿與學(xué)習(xí)過程中的始終。對(duì)每一知識(shí)的認(rèn)識(shí),必定要有認(rèn)識(shí)基礎(chǔ)。尋找認(rèn)識(shí)基礎(chǔ)的過程即是聯(lián)想,而認(rèn)識(shí)基礎(chǔ)的是對(duì)以前知識(shí)的總結(jié)。以前總結(jié)的越簡(jiǎn)潔、清晰、合理,越容易聯(lián)想。這樣就可以把新知識(shí)熔進(jìn)原來的知識(shí)結(jié)構(gòu)中為以后的某次聯(lián)想奠定基礎(chǔ)。聯(lián)想與總結(jié)在解題中特別有效。也許你以前并沒有這樣的認(rèn)識(shí),但解題能力卻很強(qiáng),這說明你很聰明,你在不自覺中使用這種做法。如果你能很明確的認(rèn)識(shí)這一點(diǎn),你的能力會(huì)更強(qiáng)。
4.那么我們?cè)鯓宇A(yù)習(xí)呢?
曰:“先說說學(xué)習(xí)的目標(biāo):
(1)知道知識(shí)產(chǎn)生的背景,弄清知識(shí)形成的過程。
(2)或早或晚的知道知識(shí)的地位和作用:
(3)總結(jié)出認(rèn)識(shí)問題的規(guī)律(或說出認(rèn)識(shí)問題使用了以前的什么規(guī)律)。
再說具體的做法:
(1)對(duì)概念的理解。數(shù)學(xué)具有高度的抽象性。通常要借助具體的東西加以理解。有時(shí)借助字面的含義:有時(shí)借助其他學(xué)科知識(shí)。有時(shí)借助圖形……理解概念的境界是意會(huì)。一定要在理解概念上下一番苦功夫后再做題。
(2)對(duì)公式定理的預(yù)習(xí),公式定理是使用最多的“規(guī)律”的總結(jié)。如:完全平方公式,勾股定理等。往往公式的推導(dǎo)定理的證明蘊(yùn)含著豐富的數(shù)學(xué)方法及相當(dāng)有用的解題規(guī)律。如三角形內(nèi)角平分線定理的證明。我們應(yīng)當(dāng)先自己推導(dǎo)公式或證明定理,若做不成再參考別人的做法。無論是自己完成的,還是看別人的,都要說出這樣做是怎樣想出來的。
(3)對(duì)于例題及習(xí)題的處理見上面的。