七年級下數(shù)學練習冊答案
學習效率的高低,是一個學生綜合學習能力的體現(xiàn)。在學生時代,學習效率的高低主要對學習成績產(chǎn)生影響。多看多學,才會進步。下面就是小編為大家梳理歸納的內(nèi)容,希望能夠幫助到大家。
七年級下數(shù)學練習冊答案
平行線的判定第1課時
基礎知識
1、C
2、ADBCADBC180°-∠1-∠2∠3+∠4
3、ADBEADBCAECD同位角相等,兩直線平行
4、題目略
MNAB內(nèi)錯角相等,兩直線平行
MNAB同位角相等,兩直線平行
兩直線平行于同一條直線,兩直線平行
5、B
6、∠BED∠DFC∠AFD∠DAF
7、證明:
∵AC⊥AEBD⊥BF
∴∠CAE=∠DBF=90°
∵∠1=35°∠2=35°
∴∠1=∠2
∵∠BAE=∠1+∠CAE=35°+90°=125°∠CBF=∠2+∠DBF=35°+90°=125°
∴∠CBF=∠BAE
∴AE∥BF(同位角相等,兩直線平行)
8、題目略
(1)DEBC
(2)∠F同位角相等,兩直線平行
(3)∠BCFDEBC同位角相等,兩直線平行
能力提升
9、∠1=∠5或∠2=∠6或∠3=∠7或∠4=∠8
10、有,AB∥CD
∵OH⊥AB
∴∠BOH=90°
∵∠2=37°
∴∠BOE=90°-37°=53°
∵∠1=53°
∴∠BOE=∠1
∴AB∥CD(同位角相等,兩直線平行)
11、已知互補等量代換同位角相等,兩直線平行
12、平行,證明如下:
∵CD⊥DA,AB⊥DA
∴∠CDA=∠2+∠3=∠BAD=∠1+∠4=90°(互余)
∵∠1=∠2(已知)
∴∠3=∠4
∴DF∥AE(內(nèi)錯角相等,兩直線平行)
探索研究
13、對,證明如下:
∵∠1+∠2+∠3=180°∠2=80°
∴∠1+∠3=100°
∵∠1=∠3
∴∠1=∠3=50°
∵∠D=50°
∴∠1=∠D=50°
∴AB∥CD(內(nèi)錯角相等,兩直線平行)
14、證明:
∵∠1+∠2+∠GEF=180°(三角形內(nèi)角和為180°)且∠1=50°,∠2=65°
∴∠GEF=180°-65°-50°=65°
∵∠GEF=∠BEG=1/2∠BEF=65°
∴∠BEG=∠2=65°
∴AB∥CD(內(nèi)錯角相等,兩直線平行)
七年級下數(shù)學練習冊答案
平行線的判定第2課時
基礎知識
1、C2、C
3、題目略
(1)ABCD同位角相等,兩直線平行
(2)∠C內(nèi)錯角相等,兩直線平行
(3)∠EFB內(nèi)錯角相等,兩直線平行
4、108°
5、同位角相等,兩直線平行
6、已知∠ABF∠EFC垂直的性質(zhì)AB同位角相等,兩直線平行已知DC內(nèi)錯角相等,兩直線平行ABCD平行的傳遞性
能力提升
7、B8、B
9、平行已知∠CDB垂直的性質(zhì)同位角相等,兩直線平行三角形內(nèi)角和為180°三角形內(nèi)角和為180°∠DCB等量代換已知∠DCB等量代換DEBC內(nèi)錯角相等,兩直線平行
10、證明:
(1)∵CD是∠ACB的平分線(已知)
∴∠ECD=∠BCD
∵∠EDC=∠DCE=25°(已知)
∴∠EDC=∠BCD=25°
∴DE∥BC(內(nèi)錯角相等,兩直線平行)
(2)∵DE∥BC
∴∠BDE+∠B=180°即∠EBC+∠BDC+∠B=180°
∵∠B=70°∠EDC=25°
∴∠BDC=180°-70°-25°=85°
11、平行
∵BD⊥BE
∴∠DBE=90°
∵∠1+∠2+∠DBE=180°
∴∠1+∠2=90°
∵∠1+∠C=90°
∴∠2=∠C
∴BE∥FC(同位角相等,兩直線平行)
探索研究
12、證明:
∵MN⊥ABEF⊥AB
∴∠ANM=90°∠EFB=90°
∵∠ANM+∠MNF=180°∠NFE+∠EFB=180°
∴∠MNF=∠EFB=90°
∴MN∥FE
七年級下數(shù)學練習冊答案
1.2.1有理數(shù)
一、1.D2.C3.D
二、1.02.1,-13.0,1,2,34.-10
三、1、自然數(shù)的集合:{6,0,+5,+10…}整數(shù)集合:{-30,6,0,+5,-302,+10…}
負整數(shù)集合:{-30,-302…}分數(shù)集合:{,0.02,-7.2,,,2.1…}
負分數(shù)集合:{,-7.2,…}
非負有理數(shù)集合:{0.02,,6,0,2.1,+5,+10…};
2、有31人可以達到引體向上的標準3.(1)(2)0
1.2.2數(shù)軸
一、1、D2、C3、C
二、1、右5左32.3.-34.10
三、1、略2、(1)依次是-3,-1,2.5,4(2)13,±1,±3
1.2.3相反數(shù)
一、1.B2.C3.D
二、1.3,-72.非正數(shù)3.34.-9
三、1.(1)-3(2)-4(3)2.5(4)-6
2.-33.提示:原式==
1.2.4絕對值
一、1.A2.D3.D
二、1.2.3.74.±4
三、1.2.203.(1)|0|<|-0.01|(2)>
拓展:有理數(shù)知識概念
1、有理數(shù):
(1)正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);p不是有理數(shù);
(2)有理數(shù)的分類:
2、數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線.
3、相反數(shù):
(1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;
(2)相反數(shù)的和為0a+b=0a、b互為相反數(shù).
4、絕對值:
(1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;
(2)絕對值的問題經(jīng)常分類討論;
5、有理數(shù)比大?。?1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠比0大,負數(shù)永遠比0小;(3)正數(shù)大于一切負數(shù);(4)兩個負數(shù)比大小,絕對值大的反而小;(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.
6、互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a≠0,那么初中數(shù)學知識點總結(初一)的倒數(shù)是初中數(shù)學知識點總結(初一);若ab=1a、b互為倒數(shù);若ab=-1a、b互為負倒數(shù).
7、有理數(shù)加法法則:
(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;
(2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;
(3)一個數(shù)與0相加,仍得這個數(shù).
8、有理數(shù)加法的運算律:
(1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c).
9、有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b).
10、有理數(shù)乘法法則:
(1)兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘;
(2)任何數(shù)同零相乘都得零;
(3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定.
11、有理數(shù)乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.
12、有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),初中數(shù)學知識點總結(初一).
13、有理數(shù)乘方的法則:
(1)正數(shù)的任何次冪都是正數(shù);
(2)負數(shù)的奇次冪是負數(shù);負數(shù)的偶次冪是正數(shù);注意:當n為正奇數(shù)時:(-a)n=-an或(a-b)n=-(b-a)n,當n為正偶數(shù)時:(-a)n=an或(a-b)n=(b-a)n.
14、乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結果叫做冪。
七年級下數(shù)學練習冊答案相關文章: